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FOREWORD

This veport <describes research effort of the Svstems
Research Laboratory to develop analytical models of defense
processes, principallv the combat process. Part of the re-
search was sponsored by the Directorate, Weapon Systems Analv-
sis, (LWSA) Office of the Assistant Vice Chief of Staff, U.S.
Army, under Contract No. DAHC15-68-C-031% and other parts by
the Office of Naval Research (ONR) under Contract No. NOOlu-
67-A-0181-0012. Because of the intimate relationship hetween

the research supported by these organizations,»the results

.are -combined in one document but issued under separate covers

appropriate to’the sponsoring agency. The report for the Office
of Naval Research is entitled "Development of Analytic Models
for Defense Planning," Report Number SRL 2147 TR 70-2 (U).

The report is comprised.of a number of parts. Part A pre-
sents an ovefview of the differential models of combat developed

in the research program and a summary of results for the reader

TN - . ; . v ; .
v whgyis interested in learning of the modeling approach without

involvement in mathematicalf@etailsQ Pants B through F contain
the mathemafiéél developments. Part B presents the concepts,
development details, and resultant models for the "attrition

rate"--the principél‘elemént of the differential combat models.

_Parts C and D describe solution procedures and analysis results

~,

for hompgenggus-forcg and heterogeneous-fofggwﬁattle models,

\

respectiVely.\‘The resulits of a small effort tc‘anéiytically
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iv

F presents research results for mlsce11aueous areas whlch are
tangentlallyﬁrela <3 to the/maln thread of research or, due to
limited effort, only state the research approach.

The research program described in this report concerned
only the development of generalized mathematical differential
models of combat, rather than detailed models of spenific
combat situations. h Fe genera* models have been applied

i
to specific combat situAtions which had also been modeled by

|
Monte-Carlo simulatior methods. Comparisons between the differ-
sntial models and a Monte-Carlo one showed that their predic-
tions of combat results were'essehfially the same. This com==~-
parison actlvfty was pmrformed by Ves tor Research, Incorporated

under contract DAH015~70 C-0151 with the D:Lrectorau_3 Weapon

Systems Analysis, after completlon of the research reported

hereln. A short summary of fh-vcompﬁrison results has been

included in this repor.fas ah appendlx‘to Part A fo;»e onstrate

that the dlfferentlal models of ccmbat, although‘abstract 1n

form, can be usefully employed

Except for the Summary, Part A, each part of the repor+ 1s
. comprlsed of chapters which are ﬂelf-contalned in so far asf

equa*lon numbers, flgures, ete. An at+ empt has been made to

ut111ze consistent notatlon throughout the chapters USlng thef::M\

definitions given ln the list of °ymbols. Exceptlons to thlsy

‘are either noted or self-evzden1 1n context of thet

model reconnaissance activities are described in Part E. . Part
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development. Frequent references are made to developments and

equations among the yarious chapters ‘and parts of the reporf‘4
to reduce redundancy of exposition. These references are madé
by the notation [capital letter, arabic'numérai],‘wheﬁévéhé
capital letter identifies the part and the arabic numebéi;
the chapter and section within the part. | |

The contents of this report repreéént.the current views
of the Systems Research Laboratory,'Department of IndﬁStfial
Engineering, The University of Michigan, and should not bé
considered as having official DWSA, Department of the’Army,

ONR, or Department of the Navy approval either expféégéd;Qr

e e e e

implied until reviewed and eValuatéd'by thoséfagénéiés;éﬁa'

subsequently endorsed.

We would like to acknowledge the contributidns of Miss™

Mary Schnell, Mrs. Barbara MacAdam, Mrs. pa-t;;‘z’; : d'Mrs.
Bonnie Wood, who patiently typed and7p566fré$d;_

report.
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SYMBOLS

This listing contains principal notation used in i he repor:.,
Some symbols are used more tnan oncc; however, their meaning
should be clear in context of a spenific chapter or nart c¢f the

report. Subscript notation has been cmitted.

English Symbols

A Blue attrition coefficient
A Blue attrition-rate matrix
A Total area searched
A Total areua searched by surveillance patrol
a; Area of‘i,t_h subarea searchec ‘
B " Red attrition coefticient
B Red attrition-rate matrix
bm [bn] Firing rate common to all units of‘the Blue [Reé)
force
c A conbined attrition-rate matrix
¢ Terminal surface invf§
1; - A’é;nstant ratio of the Ped to Blue attritic:-~
rate functionse
d ' The difference m - n
K ‘ " Distance betweeﬁ subareas (i - 1) and i
ddi - _7The-diffefance m- 5 at r:zo0
E | Ekpected yalue.operatof
E . Blue allocation matrix
E‘ - OptiLil allocation strategy matrix for Blue force
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EM(t) [EN(t))

F
v

£, 00 [fB(t)]

=

Probability that a hit after a hit destroys the

~ Red- 1n elllgence factor

Total ammunition expenditure of a Blue [Red]
unit up to time t in an engagement

Luclidean (I + J) space

Blue allocation factor

Average fraction of time that the J- -type weapons A : ij
are not advancing

Corrected apﬁrox1mate expected fraction of damage
to an area carget in s volleys

Probabllity density function of the time between B
A's "B's] rounds <

Expected. ¢racf1cx of damage tc an area target in v
voxlev 3

Approximate expected fraction of damage to an ' t
area target in v volleys . :

Probability density function fof T4

Red allocation matrix

Optimal allocation strategy matrix for Red

target

Pr~hability that a hit after'almiaé destroysvthe
target ‘ ‘ o

Probability t%:at a hit on tha fzrst round dastroys
the target L

Red ailocation factor
Blue:intelligence factoﬁ, a
Maximum number of Blue force groups
Maximum humber:nf Rad force groups

Jordan norﬁal form of a matviﬁﬁ.
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Cond1t10na1 probability of destroying the target
given it is hit by a projectile

Slope of Blue [Red] linear attrition-rate functions

Lifet}he of A's [B's]) fiﬁepowef subsystem
Time A [B] detects his f;iﬁuﬁe

Number of targé%~posfures

Probability d§nsify.function for ;3
Initial number of Elua férces |

Probability that a miss after a hlt destroys the
target

Probability that a miss after a miss destroys the
target ’

Number of surviviag Blue units at the sp11t range
in the flre-support engagemen-”.

Probability that a miss on the first round de-
stiays the target _ _

Fusber of units ii the Blue fire-support force
- Renewal function

,Number of Blue I-group losses in time increment AT

Number of Blue furces as a functlon of tlme or
rangs :

" Number of units in the Blue novirg forces 1n tbe
.fire-support ongagemenf - :

. Initial numbar of Red forces

Number of rounds fired to destroy a target

.Number of Rcd J»group 1osses 1n txme xncremeni A1
}'Number of Red fcraes at a function of time ov ran&e |
_Number of subaraas scarched by aurvei}\ance pntvcl 3 “ }

'.Wunber of rounds firud to get thc first hit h

Numbcr of ronnds to 3st (z - 1) additional hite 55
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o Pirut round ﬁit f*in

. 'rotu nmaie;aa mn ii{‘f ne!
v-foreo R ’

- Initigl lununitioh cnpplins for cuch alun I!nd)
 unit ‘

. -Suificiont anﬁnnittoa cwpplios tcr nnehﬂill_‘7i¢dz

Conditional probability of destroying the target
given it is hit by a pr03ectile

Probability of acquiring a live tanget and termina-
ting attention to that target before it is de-
stroyed

Payoff when the battle tertiinates at x on
Rehitting probability

Conditional probability of a hit given the prsced;ng
round fired missed the target

Expected number of rounds required to destroy a
target (E[ND) )

Percent force split in the fire support engaggment
A's [B's] ain;la-ahot*kill proh&bility

Probability of firing on a dedd terget

Problbilit§ of;éatietiagvn tamfixJia:ith<spb¢bil
Probability of !$r£n3~oa a live tnagit |
Prebabxlﬁty thlt ‘the target. and obonrvor are intar—

' visibla ‘
-Probability of ftrin; in a vaid area - -
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R [RB] Pange at which a Blue [Red] weapon system first
achieves a nonzero attrition rate . -
Rq Range at which a weapon system (Blue and Red)

first obtains a nonzero attrition rate (i.e.,
R = R, = RB)

e
Rp Radius of damage pattern
R Range at which the Blue force splits in the fire-
support engagement
Ry Radius of target area
R, Range at which the battle begins
v Range between forces (force separation)

r,(t) [ry(t)]  Probability density function of A's [B's] lifetime

S, Probability of covering the target in one volley
s, [sm] Distance of the Red [Blue] forces frcm some common
reference :
T Time for a single Blue [Red] system to destroy a
passive Red [Blue] target
T Total time that tHg target is in the visible state
T Duration of the enéagement -
Ty [TB] Time for A [B] to’destroy a passive target,
given he is free from failures
‘ Tb The expected time to fire on a dead target before
beginning search for another target
[ TL The expected or average time to fire on a live target
before beginning search for another target [same as
E(T)]
T Mean time between the commencement of searches when

L,x a live target is acquired and destroyed by the ac-
quiring unit

TL Q Mean time between the commencement of searches when »
? live target is acquired but not killed by the ac-
quiring unit
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=

v Tne expected time to fire on a void area before
beginning search for a target

t Time variable

t Time since the beginning of -battle ¢' 

U Value of the payoff when optimal strategies are
employed '

u Conditional probability of a hit given the
preceding round fireéd hit the target

Uy [uB] Probability A's [B's] rourd fails

v . Speed of the main ferce

v Relative speed between the Blue and Red forces
Ym = Vn ’

\ Conditional probabllltj of a hit fOIIOW1ng a miss
but preceding the first Lit

\ Speed of the surveillance patrol which advances

- o0 search area A

v Speed of movemeht.betheen subaréas in surveillance
activity '

v, [v 1 -~ Speed of Red [Bluel force

X Damage pattern'éenter of impact in the x direction

y . Damage pattern center of impacf in the y direction

z Number of hits .required to destroy the target

Greek Symbols

a Blue attrition rate
ay Probability A fails on round k + 1
a. Value of the Blue attrition rate at r = 0‘ .
a2 (r) Blue attrition-féte function
= 0

a (C) Vvalue of the Blue attrition rate at t
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Red attrition rate
Probability B fails on round j+ 1

Value of the Red attrition rate at p

= 0
Red attrition-rate function
Value of the Red attrition rate at t = 0

Probability one round is fired in (t, t + At)
Probability of destroying the target given a coverajze
Probability that a target is visible at t

Probability that a target is not visible at t

The ratio m/n |

The ratio m/n at r = 0

Time fb acquire targets

Average time between rounds during the burst firing
mode

Time required to detect a target when it is con-
tinuously visible to the sensor

Time to detect a target, given it is detected
Projectile flight time

Time to fire a round given the preceding round was - - ..
a hit

Time tc.fire the first round in the burst process

: after obtaining the first hit in the single-shot

process

Time to fire a round given the preceding round
was & miss 4 ‘

Time spent in the subarea if a target is not
detected

Time that the target remains visible

Time to fire the first round ’



wviii

¢(t) Approxlmat« expected fraction «~f darage to an area
target in v volleys at time *

¢C(t) Corrected approximate expected fraction of damage
to an area target in v volleys at time t

w

relative acceleration between the Blue and Red
forces
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Chapter 1

INTRODUCTION

Seth Bonder

o

A i

e BT PN R,

St (B Al St bl il otiaany

: b o

The importance of employing quantitative approaches to .

military planning activities is well recognized.l Central

o many of these activiiies, and of particular importance

to weapon system planning studies (selection, tactical doctrine,
¢t2.), 1s the requirement for methods to predict the effective-
ness of combat units equipped with different mixes of weapon
's§stems. 1t is further incumbent that the effectiveness eéti-

mating methods be related to decision variables under control

:“Qf“the military planner in a way such that the effect of their

'vaﬁiqpioﬂ“il§~h@ readily'obeerved.z-

_ Tﬁi,developmgnt of methods to measure or pﬁedict effective-

- ness of«caﬁbgt'units, and identification of the variables which
lignificahtlyﬁcbng?ibutc}to combat effectiveness, has been limited

- for a number of reasohs. By definition, measures of a combat

unit‘o dffictivgﬁost}shOuldffefloctithc degree to which the unit

accomplishes its mission. Additionally, it is well known that

-'niipion agronpligﬁnen:“ia_highly dependent upon the. complex

'See Ronder (1970), Hitch and NcKean (1960); and Enke (19677,

'eféggi,vikighxjglaée’oftcn times referred to as conceptual
ij”?“yffﬁﬁcticni.»c.:¢,.fivnpower, msneuver, intelligence, etc.

" e gt s




interaction of weapon system characteristic:, threat variables,
organization structures, tactics employed, and eﬁvironmental
conditions. One approach used has been to develop simple "“in-
dications" of combat effectiveness such as the "firepower
score," "indices of combat effectiveness," and "single-shot
kill probabilities." These indicators (a) do not measure ac-
compliéhment of unit missions, (b)-essentially ignore most of
the above factors which eff~ct mission accomplishment, and
(c).bear little relation to the physical combat process.

| A secund, and mostvheavily used, approach to predict effec-
tiveness of combat units is that of Monte Carlo simulation.
This appfoach is essentially one of modeling.the combat situa-
- tion in minute detail, explicitly including weapons system cap-
abilities, threat, environment, and other factors which effect
mission accomplishment. An example of the detail included is
shown in Figure 1, which depicts a one-on-onéiduel, the basic
combat activity in'large~séa1e Monte Carlo simulations of
ground combat. Random numbers are drawn'to,determina the time
for each weapon to fire its first round. Focusing on the Blue
weapdn‘system, addit;oéal randon nuﬁbers are drawn to determine

1 if the first

the flight iime of the first round to the target,
round hit the target, and if the raund’destroyed'the‘target.
This prcceess is simultaneously accomplished for the Red weapon

system. If Blue has not dasfroyed Red with his first round, and

Lrhis is usually treated as a range-dependent constant and

need not be sampled by Monte Carlo methods.
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if he is alive himself, this procqsé is repeated for Blue's

; : second round, Red's second round, Blue's third round, and so
on. The process is continued until one of the dueliéts is » :
kirled or the duel is terminated based on engagement rules

built intc the simulatior.

These activities, arnd others, of every system are‘recorded
~during the course of the battle and eventually analyzed. Solu-
E tion of such models is essentially an experiment in which the
| process is sampled and replicated a lérge number of times. The
literature reflects the existence of a large number of Monie
\. Carlo simulations used to analyze defense planning problems
(Adams, 19861; Roberts; 19635 Quade, 1984; USACDC, 195§;ABishop
and Clark, 1969).
Although Monte Carle simulaticns are heavily employed in
military planning circles, some meaningful drawbacks evist
E | in their use as effectiveness assessment tools. Immediately
g evident is the loss in generality, since a new simulation must
: be developed for each class of weapon system or level of organi-
% zation examined. Associated with a simulation ie the-large |
| expenditure of time and financial resources for the deVeicpment
and utilization of the model. It would hot be unreasonable to

expect to spend JO to 15 man-yea_rs in just developing Vd‘limula-'b.b

Rty

tion of combat such as Carmonette (Adaﬂl. 1961) or Dyntacs |
(Bishop and Clark, 1969). Additionally, 1t would not e nrea~

sonable tc expect cach replication of the ninul#tign to b@quife f_
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10 to 20 minutes of computer time,l and anywhere from 10

to 60 replicatidﬁs for statistical stability of the results,

The large number of variables usually included in simulations
makes it extremely difficult to run parametric studies with the
model to perform sensitivity analysis over the simulation assump-
tions and input data. This is due té both the statistical
experimental design broblems and money constraints wnich prohibit
the large number of replications needed to determine the distri-
bution of cutcomes. Finally, and perhaps most importantly, the
large amountrof detaii contained in the simulation makes it
difficult to use as a tool for analysis, i.e., single out those

independent variables which significantly contribute to' the

" combat effectiveness.

In contrast to the Monte Carly simulation approach, a

‘limited amount of effort has been devoted to developing and

using analytic (mathematical) models to predict the effective-

ness of combat units. In~this lpproaeh}the physical coxbét

or afher militnry situation‘ié studied and decomposed into'

its basic elementt. mathematical descriptions of these elements -

. are coveloped, ‘and those elonant deacr*ptions are 1ntegrated
o in an a;sum0d overall unthuantical structura of the process

.*dynsnict. Solutions nro obtained by concistent mnthematical

 ogtr¢t1onu giving ris. to rﬂlltionships betwcon indopendcnt

| fft?nua; with the CQannnotto si ulation rmquirud 2 m&natos
4 pouter time to simulate 1 minute of battle in ein;lc
mu«m (Mm. 1951. p. 35). e

SRR m- For e e e B0 L L




variables and the dependent ones of combat effectiveness.

This approach has a number of obvious advantages both in ite
cwn right and as a powerfuv) supplement to Monte Carlo simula-
tions. Time and iinancial resources for development and utili-
zation are usually markedly reduced. 1In analytic formulatlons,»
the relationship between 1ndependent factors of the process

and the process output is usually ex311c1tly presented, facili-
tating both sensitivity analysis and determimatiom of those
independent variables whlch s:gnlflcantly contrlbute to combat
effectiveness. Flnally, analytlc structures are usually more
general, thus fac111tat1nr more generallzed use of the models

across different comsat organlzatlon levels and weapon systems.<'

sy

Although analytlc ‘ormulatlons appear to have a number of
obvious advantageq as mllltary planning tools, bnly a limited
number of them have been developed or employed as-plannxng
procedures. The most promlnent of the ;e are the Lanchester
theories and the theory of stochastlc duels, both of whlch are -
well documented in the 11terature (Dolansky, 196u Ancker,‘1967)
The structure of 1nitia1 Lanchester theorles is glven in |
{c, 1.0] and a summary of the stochastlc duel 11terature is ~
contalned in [F, 1.11]. A brlef summary of problems assoo1ated

-with their use as plannlng tools is: ngen below.r ‘
The Lanchester theories of combat provade the means,i

of describing combat between organlzatlons comprlsed of numbers'

of heterogeneous weapons systems; however, general solutlons e
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(Engel, 1954; Willard, 1962), a number of other imp&rtant

'aciiéiancies currently exist uhich‘preclﬁde their use as plan- E

ping tools. No-mean; are available for predicting the attri- _ E

tion ooefficients--a principal effectiveness input to the g

th.dry-c; a function of the capabilities of the weapon systems. %
-

jmuim iam&niagiy m mtricfivo upsmtiom: vegar:':nu

for the heterogeneous~force case do not exiet. Excluding the , i

apparent contradiction of results from verification studies

bt g
i vy

npbility of weapon systggg§*_‘~3mpcxtant aspect of their .

_,_——-__

;tastical use) is not explicitly conszdertd, nor 15 the faet’
- that the attrition eo-ffic:.ems vny wben nith‘r on' both g

Wm: use acbhile wespsn m, di.e., vu'iltxons in

‘fome separation affect a W system’s acquisition, fire-
o wur, and mtaction wﬁu

Tae rclattvaly new th‘nry oF ctoeh;stic duals .Attempis -
3o avoreone a n‘jcr dcficxency of the Lancheéster fonmu1atxo'~-

- that of agguutina the weapon aystem parangters. Stochastic

dusl descriptions inclule hgc;c.ueappn.cgpabilitxes such as
t'li'l-'.ir”firing times, hit mvb&bﬂ*th‘s, and kill probabilitics.
To un. thia .ppmch hn been only partlally luccessful.

| -mm thea- hu bocn an attcnpt to consider fundamenta"

htico of uo&pom tyatm. the duels :Lgnore some

| f;,,.pmm W‘“ ‘and. plm mher matric.tiwe a.uum“th
W tho We&-x. M'Pl:lcdﬁarn ‘of the stochastic duc? - um“
fs:o m:ipac amu and, moTe. inpovtamly, lwst'-%ca’!‘ hatics

"‘:_n;nm the Laucheea



Iy

4approach, the stochastic duel descriptions virtvally omit the
effect of mobility on the outcome of engag:ments and the fact
that the weapon parameters are time dependent when either or

both combatants employ tactical mobility.

In summary, methods are needed tc predict the effective-
ness of combat units eQuipped'with mixas of weapoth systems.
There is a heavy reliance on Monte Carlo simulations of com-
bat for this puvupoes; however, there exists a number of signi-
ficant deficie icies in their develorment and sole utilization
as planning tvols. Although analytic approaches appear tc have
some obviou., advantages in their cwn right and as supplements to
Monte Caric simulations, deficiencies in fhe existing Lanchester

and stoclustic duel theories are sufficient to limit their use

- ea

as plann.ng tools.

T .2 objective of the research program deacribed'hebéin
ia t, aevelop analytic rcpvoaentatigns of combat and other
military activities that can be used efficiently and iffcctive—
)+ “or planning purponai. Per discussions with ltqf£ 9f the

Firectorate, Weapon Systems Analysis, the rcbear@h‘f@gﬁééd’on

r:attalion task force units and combat niisiéhc. ThelA

of this part of the report presents an ovorviaw of th! approach,:

taken, a qualitative summary of the results obtained, and?a _
brief description of additional research requirements.$ Parts R

B through I' of the report contain the quantitative results,

detailed mathematical developments, and solution procedures.,if'“”
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Chapteyr 2
AN ANALYTIC STRUCTURE OF COMBAT

Seth Bonder and Robert Farrell

In a broad sense the primary objective of our research
is the develcpment of analytic structures that can de used to
predict the resulte of an artificial history of combat.
Essentially, this would be a trajectory or trace 6f time,
geometry, casualties, and resources expanded for both'forces.l
Measures of combat effectiveness such as the ratio of sur-
viving forces at the objective, time to overrun the objective,
and the amount of terrain controlled are then detgrhined from
thess results of battle. O,

ldoa]ly, there exists some !unctional rnlationship be-
tween the results of battle end the initial numbors ;f fcrces.

types and capabilities o! the weapons aystems.

s

;doctrine
of employment, and the environment. Thus, wo would like to

specify the function f :hbwn;iqlow.

'“Numbcishof Féfﬁéé

Results "\ Tyres of Vcagon Systems
of = f { Weapon Capabilitics .
Battle '«1Doctr1ne of Employment
1 (tactices,- orgnnization)
‘anironncnt - ; o

11v ie important to rtcognize thnt whlt 1: bei g
is a descriptive. thcomy of combat activities an
normative one which specifies’ :an optizum fo
although some optimi:atian ntthodc ‘have . buonw

ne
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Unfortunately, it is not known how to hypothesize such‘él'“
function directly, nor is there sufficient data to dovelop i

it empirically. Because of this, we attempt to approxim"te

what happens in a small period of time duving:thp4batt

That is, for each side, it is hyp&théﬁiéédltﬁdﬁfiﬁf%iah_:tﬂ;
period of time »‘ & Ce] iA.N e
(a) locations cHanga due to tactical movement,
(b) weapon ayltems ara attrt'
(c)
(<)

systems and pcrconnol are’ lttritod durinz thinl_if «
ran be predicted.? It is becauae of t}is rate focuut_,
mathematical strusture amployed to modcl th- combat ;otivity
is that of differential equations. |

For convenience, names are assigned to the numbers of

different groups of systems in each forca. Let ,

I&zserve comnitment and resupply d rins the. umsll 1nteg
me are also possible but are omitted for praacnta%l‘

’This essentially is the concept of measurable a f;
formulated by F. W. Lanchester (1916). g
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th patiech et
N TE the numbor of surviving Blue units of the i ' 3
- . - H
ii !!‘OUP (i ] 1 2....’1)0 : E - I
- n, * the number of surviving Red units of the jth ) :
%; group (4 = 1,2,...,7).
% . Different groups are determined by their ab:.lzty "o attrit
| I
E i wespons systems of an. oppos:.ng group._ Thmfore, m‘isnte N
o wespon system« and rapid-fire machine guna form diffevent '
¢ 3! .
3 3" groupse. since the rate-at which they can attrit tapgpts of = TTUYiie—

an apposing group are different. mwx thihr

Wnapon systes types cen form aif Mm if they are
4t ¢iffersit vanges 1o -the tam mm ﬂzﬁ. gifference

| affects whede abiliry to stirit it, Thig,. & Tas platoon

| m mwises 30w e fabeet 10 & 2 j.'_' t g than W

vie mm os!' ﬁf wrmsvuy is

m o W ﬁu
El}& the veke O lnu of units in the jth M group due
to the 37 Hue gwoup is proportional to the number

S ef uﬁm in e Paan Blus group with a proportionality
rm qﬂm the mzzutan coe!ﬂeicnt, and

e m—— - PRl

ﬁi the pate of 1oes of aniu_ia.tb-. ‘&ﬂ‘ kodgraab in
ml is t!uma! the Mof losses due ta

mm': ia Blua group:.

A




-
v
[

(q;"y"r{vr' T
! ?‘e‘rﬁ-h. T M

v;'!"‘l s

s s g
. g

L Mathematically, these assumptions take the form-of the following

- coupled sets of differential equations:l’2

| ]
et s et o, s et ok e @ e o m,-ﬁ

I —-_ '; e e e e et 0 ,; i
S L an = -/ Aij(r)mi -for j = 1,2,000,0 {13
dm, e
E— EE Bji(r)nj fO!" i ¢ 1‘2’oco_,1 s - (23 fA ;
j=1 ‘
where ) E
Aij(r) ® the utilized per system effectiveness of
systzms in the ith Blue group against the , .
¥ ) . v .
jt“ Red target at range r. This is called o
the Blye attrition coefficient.
I
Bji(r) a2 the utiliged per system effectiveness of s
- systems in the jth Red group against the
1™ R1ye target at range r. This is called f
‘the Red attrition coefficient, %

IAlthough the variable r is used to designate the range
between the firing weapon group and the target group,

- i1 should be noted thai, in application of the model,

~actusl time trajectories and positions of each group

- can be considered. ' ' .

_zAlthbugh‘hbt-explicitly'shmwn, resources expended arv

cexplicitly containad in the development of the«A*j
 fsee (B, 2.0] and can be determined directly %
 from the model, as notea in (F, 3.0].

B e e N Rt 10T T e U BT e
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It is noted that this fermulation is a deterministic one

which treats the numbers c¢f surviving foxn::eS”(m:.L and nj) as
continuous variables, whilerclearly the actual battle activity
is a random phenomenon and m, and nj are integer-valued vari-
5‘5' | ables. Although many probabilistic arguments are ccntainad in

this formulation {as shown in Parts B through F of this re-

port), the output of the model is a deterministic trajectory

i v e s

%‘~i} . of the surviving numbers of forces. The reasons for this
:ﬁgiermznlutzg‘1eeﬂnlat1,n, lns?ead of a stochastic one of the
35 same process, are given in [B. 1,0]. It is of interest to

note that research done on comparing the deterministic and

P

; stochastic formulations for the homogeneocus-force case (only
P one forca group on each side) indicates that the deterministic
formulations are reascnably good approximations of the ex-

ﬁectcd number of survivors if there is a small probability

[P

that either side is annihilated. Additionally, in many de-

P

[

fense stidies that employ llonte Carle simulations, typically

only the expected results are aoonsidered in the decision-

.’_”,.
B wrine

S—g

unking process.

o —————— . panian ot i,

i

The attrxt;on coe;f1c1ents (A j and 831) are, as one

woulﬂ expect, ccmplex functlors of the weapon capabilitics,

i i
[

N, e
P2

target. chnracteristics, dxatrmbution of the targets, alloca-

tion pvccaduren tor assigning weapons to targets, etc. The

modzl attemp»s to reflecet these complcxltxes by part1t10n1n~

the total attrition proccas into four diatxnct ones

o

ey

$

5 vt e b
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1. The effectiveness of weapons sytems while firing

on live targets,

2. The allocation procedure of assigning weapons to
targets,

3. The inefficiency of fire when other than live
targets are engaged, and

4, The effect of terrain on limiting the firing
activity and on mobility of the systems.
The latter was not examined in the research prégram; however,
a means of incorporating these effects was included in the
comparison of the model predictions with that of a Mohte |
Carlo simulaticn model, as described in Appendix A. ‘
The first three effects are included in the attrition

coefficient as

A1

A. . (m)

3 Qij(r)eij(r)Iij(r) [3]

r
=
ek

where

°ij(r) 2 the attrition rate--the ra:: at which an
individual system in the i~ Blue group
destroys live jth group Red targets at
range r when it is firing at them,
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| . e;j(r) = thz alloeation factor--the proportion of
the it Blue group systems assiuned to
fire on the jth group Red targets winich
are at range r,

i Iij(r) = the intelliaence factor--the proportion

of the ith group firing Blue weapons
allocated to the jth

Red group which are
actually engaging live 3" group Red

targets at range r.

Simjlar definitions exist for the componeﬂts of the Red

attrition coefficient, Bji'

Major emphasis in the research program::ias been on the
]

development of methods for predicting these X?puts and the

development of solutions of the resultant coujled sets of

differential equations. The methods develope', date and

9 results of the solution procedures are summarizpd in Chap-

ters 3 and & of this part of the report. Chaptey 5 brietfly
describes results of related modeling of veconna  sance
antivities and an extension of the stochastic duei models

¢f combat. Areas for future research are also not®d in

P Chapter 3.

A fm e Er—r— Ty e
.




Chapter 2

ATTRITION CCEFFICIENT PREDICTION METHODS

Seth Bonder and Robert Farrell

As shown in the previous chapter, the attrition coef-
ficient is made up of the attrition rate, the allccation
factor, and the intelligence factor, Research has been de-
voted to the develcpment of methods to'predict +he ;e inputs
with major emphasis on prediction of the attrition rate.
Detailed descriptions of attrition-rate prediction methods
are given in Part oL of the report. Allocation factor re-
search is described in [D, 2.0] and formulae for predicting

the intelligence factor are developed in [E, 1.0].

3.1 The Attrition Rate

Basic to the differential modei or theory of combat
is the attrition rate, which is the rate at which a weapon
systom can Jestrov live targets when it is firing at them.
Ir the classical Lanchester itheories, the attrition rate
has heen assumed constant or state-dependent (dependent
¢l the ruubers f surviving Red and Blue forces). The
abilite to obtain, other than hindsight, a satisfactory

estimate of the attrition rete for future cngagcements has
3

lin.ltrd the ure of cloassical Lanchae ter theorics for planning.

"he ~orcept of the attrition rate formulated in this

research program is described in [B, 1.0]. Simpiy, it is
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-'aSQQmed to be dependent on a multitude of physical param- -

eters of a weapon syetem which describe its capabilities in

such apreas as acquisition, firing accuracy, delivery rate,

"fand wéxheadzlethality. This dependency gives rise to two

distinct &griations in the attrition rate--variation with

bange'tc the target and chance variation at any specific
1

rangé. A mathematical structure of heterogeneous~force
combat which includes the range and chance variations ex-
plicitly carnot be analytically solved with existing mathe-
matical techniques. For this reason we nave sunpressed the
explicit chance variation and used average attrition rates.

This leads directly to the combat formulation given by equa-

“tions 1 and 2 (sece page 14). In this formulation we can con=-:

sider the range variation of the attrition rate explicitly
and somewhat indépendently of the chance variatién at eachn
specific range to thé farget.

Based on some logical and mathematical arguments, it
nas been shown thaf the appropriate average value definition

of the attrition rate to use (for a specifie range) with

equations 1 ard ? is

Qij(at range r) 2;5'*__59_,_ s ’[SJ'

—e
E[Tii]v]

;For‘claritybbf discussion, variations in the attrition rate
due te changes in target posture, environmental effect, etc.,
~which can be included in the model, are not presented. :




where

ELT;. Ir} "= the expected time for a slngle Blue
.system of the il group to Jestroy a
passive jth group Red ttrget, ngen the
target is at range r.

e S, Setmeegrs i

This definition for an average value of the attritien rate
at range r is equivalent to the harmonic mean of the attri--
tion rate when it is viewed as a random variable at range r.
This definition also leads naturally to defining the range
variation of the attrition rate as the varigtionlin the
reciprocal of E[Tijlr] as the range to the tdrget changes.
The range variation is called the atétrition-rate function
and is denoted by ay (r), as used in the differentlal equa~
tion structure of combat.

Based on the above diécussions; researCh}on attrition

rates haS been concerned prlmarily with tne developmsnt of -

'tzme to-kill probabllzty dxstrlbutions and their expected
_ values for a apectrum of weapon systems. ‘The distrxbution

: for the tlme-to-klll random »arxgble is developed by consxd-

erat;on of the number of rounds expended to achieue the. klll.
Thus, the amount of ammun;tlon reaources expended can be )
cbtilned dlrectly for a specific colbut actlvity.. Ellln-
txally what 'is done is to take the physical process of the 3
duel (whxch is baszc to Monte Carlo szmu’ations) and madel

the dynamlcs of thxs process mnthemttically.» :

RS

R,




To ensure that the attrition rates developed are general,
a taxonomy“cf weapons systcms tﬁat‘ig not qependené on physical
hardware characteristics (such as caliber) vas developed.
Rather, the taxonomy reflects characteristics of weapons sys-
tems that would affect the methods used in predicting the at-
trition rates. ‘ |

The taxonomy -is shown'in'Figure 2, Weapon systems are
first classified by their lethallty characterlstlcs as hav1ng
either impact-to-kill mechanisms or area-lethality effects.

Within each of these categories, we have found it useful to fur-

ther classify weapon systems on the basis of their methods of

using firing information to control the system aim point and

their delivery characteristics, i.e., the firing doctrine

oA Ronr i .. iy

employed. _
Methodes have been developed that allow the prediction of

; .-4,
LE I SO IR S e e 0

attrition rates for many of the weapon systems shown in the

taxonomy. The first caaes analyzed involved single-tube firings

vation of the effects of the preccding’rounds These arw'cailed

"raoaated single-shot" do»trines in our schema. and are some- "

timgs c»iled ”shoot-look-shoat“ doctrincl by other analy&ts.

:1’ . in which launch of a projectile occurred only after the obser-

Ana lyses have becn undertakcn ~{ two. subelasses,,-(a) those in»"f'

.whiah no use is made of informntion obtaincd from obsewvations

'}‘and (b) those in whxch the obcorv&tiant are treatad distinctly

dnpcnding on uhether they Aro a hit or ‘a8 miss, leading to

jdiffercnt typcs of eorrectien in Qin point for these two- cases.

757 R et

i u;.vwww
! t&‘. * . Y
»

gJ

o |
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LeTHALITY MecHANISM:
1. Iweact
2. Arga
Fire Docraise:
1. ReEpeATED SiMeLE Stm:
*A) WITHOUT FEERBACK CONTROL oF AR PGINY

*B) WITH FEEDRACK QN 1 Y W
rousd (Manuov &w
€ Wi cwm rmcx

-2, luwf Fire:
®A)  WiTHOUT AIM came OR DRIFT IN OR BETWEEN BURSTS

*B) WITH AIM DRIFY 1 ms. AN wrm ™ ORIGINAL
ATH POINT fOR m et

0 BUTR ALM DRIFY, RE-AIM- AETVEEN mn
3. Movseee-Toae Fmam Fzepmacx Sivwarions (A, B, O)
1) SaLvo R VOLLEY | |
b Mixep-Mooe Fimime: o
A AosusTHENT rm » mnﬂ.s-m FIRE
| ’B) A»..msmw mm » mr FIR£ |

lﬂDlCATis T“AT ANALYS!S OF TNIS CATEGORY HIS ‘Eﬁh PEP‘ORMED-_-

Figure 2 Weapon System Clcaeification for the Develcp-‘

- ment of Attxitlon thes
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This subcl§ss ;s called “Haﬁkov fire." A Lomplete1§ general
time-to-kill prob;Silifi;distrihﬁtion5for Markov fire systems
has been developed. Weapon system paﬁameters that are inclﬁded
explicitly in the distributibn are shown in Figure 3. Methods
of prc@icting these parameters from basic hardware considera-
tions are well known.

The more complex doctrines involving "multiple~-tube
firings" and "burst fire," have been analyzed separately.
These are classes of systems for which the projectiles‘may
be launched before observation of previous round effects.
Burst-fire cases analyzed include those in which rounds are
all identical with respect to accuracy (né drifting or con-

trolled alteration of the aim point) and those in which the

 pounds within a burst vary, but the bursts are resighted to

the same aln poiat. All proscnt analyses have been based-on
fixed-length bursts. The complex case in which burste are
re-aimed on the basis of observation has not been analyzed.

Preliminary annly;es have been conducted of mv’tiplt-tuhe

,firxng cases, and it has been dﬁtenninod that the attritxoh‘f

rate for both volley and salvo fire mcy be ropresqntcd by-the”,

.‘sénd fbrmulaa. The nothod devolepcd coneid-rs a weapon ays-'

tem which. pcrhnpa nct knouiag the exact locatian of targets,
fxrcs indimoctlg iato in nrtn‘a&th a prejnetile xhat iniwtrs
duage-pmduein; etigm om pm af th- ma. Pwmurs |

" included in the method are shown in u;m B, Each of these

letﬁl‘ﬁ m b‘
1:t:c- o: o

*Tﬂj;exnd fral-balie h@rﬂuctu ehirncterc_*
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TIME TO ACQUIRE A TARGET

TIME TO FIRE THE FIRST ROUND ,

TIME TO FIRE A ROUND FOLLOWING A HIY -

TIME TO FIRE A ROUKD FOLLOWING A MISS

PROJECTILE FLIGHT TIME

PROBABILITY OF A HIT OH FIRST ROUND

PROBABILITY OF A HIT ON A ROUND FOLLOWING A HIT
PROBABILITY OF A HIT ON A ROUND FOLLOWING A MISS
PROBABILITY OF DESTROYING A TARGET GIVEN IT. 1§ HIT
'PROBABILITY OF DESTROVING A TARGET GIVEN IT 18 HiSSED

 Figure 3 vf_‘géti‘or}s ‘Included in Mtéi‘t_iuﬁv Rate for

~ Single-Shot Markov-Fire Weapon Systems ~
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WEAPON AIMING AND BALLISTIC ERRORS
TARGET LOCATION ERRORS

WEAPON FIRING RATE

WOLLEY DAMAGE-PATTERN RALIUS
TARGET DISTRIBUTION

TARGET RADIUS

TARGET POSTURE

PROBABILITY THAT THE TARGET 18 DESTROVEL GIVEN
IT-1S COVERED BY DAMAGE PATTERN

lrigureﬁ ractors Considexed in Attrltlon Rate for
Indlrect. Area FLPL Weapons I
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Finally the mixed mode firing doctrine in which a period
of single-shot fire is followed by burst fire has also been

analyzed.

3.2 7The Alloeation Factor

As noted earlier, the allocation factor is the pro-

th

portion of the i Blue group systems assigned to fire on

jth group Red targets. This is included since only those

gystems directing their fire {(or other lethal effects) on

th

the 3 group or its area are likely to cause attrition of

the target. The allocation factor may be innut by military

- judgment reflecting the assignment strategies deemed most

appropriate to the tactical situation. This factor may be
input directly or determined from a priority or target worth
scheme. _

Research in this area has focused on the determination
of optimal or good allocation strategies when the battle
dyramics are descrihbed by the coupled sets of heterogeneous

differential equations shown earlier. The reszarch is de-

”écribed in [D, 2.0]. The results obtained are “:=ed on the

following assumptions:
(1)  Zero time is required to switch from one target
group to ancther, N
(2) Projectile flight *imes are small, and

(3) The groups have perfect control and intelligence.

Ml Mt WO § S i
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The research has shown that, for linear payoff functions,

it is ineffective for individual weapon types to distiribute

' their fire over different target groups. That is, all i-group

weapons should engage alllj-grdup targets with no splifting of
fire allocétion within a group. The optimal assignment stra-
tegies are such that all weapons of a single group'shOuld

be assigned to a single group in the opponent's arsenal.

Mathematically,
- 1 for j =K o
'\f‘sz}fitl ) for i £1,2,...,1 (6]
' g for j # K
‘ X for i = L
hjih‘) s _ for 3 = 1’2,000.\1 3 [7]
NS 0 for 1 # L

fﬁhépe K and L denote a specific weapon type in the Red and

Blue forose, respectively.

' jthegrgéearch has also shown that the choice of group

‘]tqué £ire§‘upon_isfindependent of the number of weapons
 dn the fining'or.thrgct group. The class to be fired
'.upon’isiselecteﬁVBy determining the maximum attrition rates

_oﬁ“thq;manginhl*utilities of the oppbsing groups and nct

i e o e

e
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-

difocliy by the nudber of weapons in the oppoiing 5roups.l
Furihepmore, althaugh prv?iuu» resecarch (Snow, Jéts) cnploved
the assumption that the allezalion ouqffinkuntsbwerc conslant
throughout the battle, it hasz bsen shown that switchi,,
surfaces du exist, i.e., the optimai aliocation strategy
chahgvﬁ during the battle even though none of the Blue
or Red force gﬁoups aye annihllatcd. |

Closed~-form analytic,soldtions for the optimal alloca-
tion strategics (initan) allocatimn and switching surfaces) .
have becn obtainga for the twe-on-one battle, i e.,iiés&”'
groups on one side and one on the other. The néih:d'uéed
js applicalle o higher—obder battles; howé?érA the mathe-

matics pels extremely cumberscme.

3.3 The Intelligenae Factor

As previously noted, the inteililgence factor is"the;pp¢~

portion of the ith group firing Blue weapons allocated tc
the ith Red zroup which are actually enéaging live jth’group

 Red targets. This factor is included to cemsidsr the loss. .

5

[oid

in efficiency (effectiveness) of é,fipihg weupéﬁ'whén it

firing on either targets already gtfriféd or on aredpAthat’

Irhis has an otvious implication cp intelligencas rejuirements
during a battle for allocation. ' All that needs t¢ be known
is that there exists a live j-grit)h target and nct the number
i live weapon systems in it. - ’ -
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are void of targets. Research in this area is described in
[E, 1.0] and suggests that the intelligence factor should be
predicted as

T.
I(r) 3 ._1:_52_2_, (8)

b ]
pyTy * PpTp * v iy

3

where
P, = the probability of firing on a live tavget,
Pp = ithe probability of firing on a dead t-rget,

the probability of firing in a void arca,

Py *
TL = +he expected or average time to fire on a

live targoet,

$D = the expected or average time to fire on «

dead targoet,

-
154

the expecied time to fire on a void arcd.

At the present time, only the parametevaL, which is equal tec
the expected time tu defeat a live target,” can be predicted
as input. Research is required tc deveiop methods to esti-

- mate the other parameters.

lThat‘is. TL is equivalent to what was previously refarred
t6 as the expelted time to kill a target, E[Ti !r].

S
- . 4

-

vt ¢ wanE




D e b e et i Lot b LR = BT e e E RS a e b o, A 4

A e ket ik sed Dt aes AL £ Lol ihan dhiiabid. SN

Chapter 4

C™MBEAT MGLLL SOLUTION PROCEDURES AND RESULTS
Seth Bonder

The basic structure assumed to describe the combat
activity was given bv the coupled sets ol differential

equations

I
dwi §ij 7
v = -4 ‘ Aij(P)mi Tor 4 = 1,2,00.,T
i=3
Jd
diny for i = 1,2 I
: — . . ’,;. -orl: :.l.' »
I B. (1)11 ’ ’
=1

The preceding chapter summarized methods that have been
developed to predict inputs to these equations--the attri-
tion rate, the al.ocation factor, and the intelligence
factor. This chapter briefly presents results of research
that has been directed to obtaining solutions for the above
equations, where a solution is taken to be the trajectory
of surviving forces of each type during the battle as a
function of basic inputs and initial numbers of forces.l
Idealiy, it would re desirable to have the solutions
in simple, closed form which would veadily portray the rela-
tionship vetween the independent factors of the combat process

and the surviving numbers of forces. This would facilitate

—

1
Lopistics and locaticns of survivors can also be determined
as part cf the solution, but are omitted in this discussion,




both sensitivity analysis and determination of those inde-

pendent variables which significantly contribute to combat

effectiveness. ttempts to obtain such closed-form solutions

have focused on simplified cases of the combat equations
ir crder to obtain some insight into the solution procedures

and problems related thereto. These simplified cases include

(a) homogeneous-force battles (one group on each side) and

(b) constant-coafficient, heterogeneous-force battles.

A summary of the results of these research efforts are pre-
sented in succeeding sections. Details of the homogereous- and

heterogeneous~force battle soluticns are given in Parts C and D,

respectively. A numerical solution procedure was developed toc

solve the equations for simplified tactical situations involving
heterogeneous forces and variable attrition coefficients. This

procedure is described in [D, 2.01].

4.1 Homogeneous-Force Results

We considered first the simplified case of homogeneous-

force hattles with unity intelligence coefficients.l The general

hetercgeneous equations notled ‘above reduce to

Qr{il = —alr)n(i) (9)
dgéﬂ = -BOrIn(), (10)

-Iéll research presented in this report has considered unity
intelligence coefficients.
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Since there is only one group on each side, the allocation
factor is also equal to unity fov eacﬁ force. In these eﬁuaa
tions explicit notation showing the time and range dependen-
cies are given. "

In order to include explicit consideration of some di-
mensions of mobility, the,one-dimensionél battlefield coor-
dinate system shown in Figure § was considered. The symbols
n and Sm> are the distances of the Red (n) and Blue (m)
fbrces,respectively,_from some common reference. The abeove

equations can be converted to the space domain depicted in Fig-

ure 5, resulting in the following differential equations:

) o
d‘n w_ _ 1da] dn af -
—-2-*[‘7 aa?] cr e ()
dr v v

' 1 dp} d )
d‘m w m afl -
_;7 + [:2- - E a—r-;} a; - '—"7 m=0 . (12)

These equations explicitly include maneuver characteristics

of the forces such as speed (v) and acceleration (w) and the

rarge variation in attrition rates when the forces employ
mobile weapon systems.
The solution of these equations required knowledge of

the attri+tion-rate functions,1 a (r) and B8(r) for the Blue and

IIt wa3 noted in the preceding chapter that the attrition-rate

function is defined to be the variation with range in the
reciprocal of the expectad time-to-destrov a target.
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Red weapons systems, respectively. Examination of data for
some representative weapons systems suggested & humber of
forms for the attrition-rate functions, some of which are
shown in Figure 6. These characteristic shapes were given 1

appropriate mathematical descriptions, e.g., linear, qua-

[ ——y
e v

dratic, exponential, and cosine attrition-rate functions.
In each case the range R, is that force separation at which

. i

the weapon first attains a nponzero rate of attriting targets. ‘-
Attempts were made to obtain closed-form solutions ror

the homogeneous-force battle equations with these attrition-
rate functicns under the assu@ptioh_that the acceleration of
forces was zero (w = 0), t;e.,-a constant~épeed battle., For
example, -assumptions of lingar attfitionprate functions for
both Red and Blue weapons are ahowh'in~riguré‘?(a). Here
qu and RB gre the ranges at which the Blue and}Red weapons
‘systems; respectively;_firsf_aehicve nonzero attrition rates.
The resultant equations~éoﬁld not be quQad in closed form

‘without further assuming a constant ratio of Red to Blue

attrition-rate functions. This last assumption for linear
attrition-rate functions is shown in Figure 7(b). A general

~lesed-form sclution was developed for any pair of attri-

tion-rate functions such that B8(r)/a(r) = constant.

Even with these Gverlv gimplified, restrictive assump-

T TSN LTI

tions, svlutions to the variable~coefficient uifferential

equations gave rise to some interesting insights and
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comparisons with existing theories. In particular, the

classical constant-coefficient Lanchester formulation of this

problem suggests that a Blue force will lose a battle when
aM? < gN? >

where M and N are the initial numbers of Blue and Red forces,

respectively. This lose condition implies complete annihila-

tion of the losing force.

Analysis of the variable~coefficient solufidns. however,
indicates that this win-or-lose condition is completely mis=-
leading. Rather, one should‘consider some measures of effec-
tiveness (numbers of survivors, difference of survivors,
ratio cf survivors, etc.) at the end'df thg;battle'ihstdad*

of the complete annihilation conditions. Thus, one may

‘choose to consider any or all of the above measures of effec-

txvenes; when the force separatlon ls zero (the attacker

’crosses over the defended llne) or some prespec1f1ea break~
.point in terms of survzvors\and/or fcrce separation,,_when'
~this is dohe, then the reSuits»of'the battle aredhighly de=

,pendenn on the assault speed and the relaticnshlp between

the nitial, ,znear, and quadrattc condltxons deflned belcw.

Initial U:nditioﬁ:

it ke,
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Linear Condition:

GOM { } BQN

Quadratic Condition:

(101"1?{ }BN ’

where o, and BO are the attrition rates for Blue and Red

v oA

A

v i

weapons, respectively, when their forcé'separation is zero.
The effect of these conditione and the use of mobility as
measured by the assault speed are shown in Pigures 8 through
11. The figures show the effect of the assault speed on the
difference and ratio of surviving forces at the end of ti-e
battle.

The conditions shown in Figures 8 and 9 suggest, by

classical Lanchester’analysis, that the Blue force will be

annihilated. This is true if their aSsault,speed-is less

than % mph. However, increasing their assault speed to

approximately ZD'mph.will-result in their afriving at the

~defendéd'poaitianrwith»a‘superiority of 14 units (where the

“initial superlorzty was 20) or a ratio of 2.9 to 1, where

the 1nit1al ratio was 3 to 1. " These flgures are suggestlve

of two. phencmena.

1. Attacklng with suff1c1ent speed is a means of con=-

' serving one's own force, i.e., get the enemy before
he gets you. This we might term a saturation
principle in that we saturate the enemy's retalia-
tory firepower capability with maneuver.
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Incredsing the assault speed increases the satura-
tion effect; however, this effect has a decreasing
marginai bernefit,

The decreasing marginal utility of increasing assault speed
is evidenced in both Figures 8 and 9; however, it is more
pronounced in ‘he ratio measure of effectiveness.

In contrast the these results, the conditions of Fig-
ures 10 and 11 suggest, by classical Lanchester analys: s,
that the Blue force will annihilate the Red force. This will
occur only if the\Blue force assault speed is less than
13 mph. Increasing their assault speed above this will re-~
sult in their arriving at the objective with a lower super-
iority, measured by the difference and ratio of forces. It
is inter.sting to note that when the measure of effectiveness
is the force difference at the objective, there is a unique
worst speed for the Blue force to attack; however, the ratio
of surviving forces continues to decrease with increasing
assault speed.

Although closed-form solutions to the homogeneous-force
combat equations when the ratio 8(r)/a(r) is not constant
have not beén Abtaihéd to date, rescarch efforus have pﬁ;.

directed to obtaining parity conditions (conaitions ieading

to equal numbers of survivors on both sides at the end of the

battle). Based on the work described above, we felt that




these conditicons would depend noct only on the force si:z e\}
but also on the shape of the attrition-rate functions, the
effective ranges, the range at which the battle is initiated,
and the mobility of the attacking force.

Approximate soclutions to the parity conditions have
beer obtained analytically (see [C, 4]); however, they heave
not provided a great deal of insight to date. Analog com=-
puter solutions to the equations, however, have tended to
support the above conjéctures. The analog computer provides
a visual display of the solutiocn space when par:imeters 3uch
as initial number of forces, assault speed, effective range
of the weapons, opening range of the battle, etc., are varied.
Systematié variations of these paramgters were made to ob-
serve the trajectory of the parity cohditionsh(m z n at
range r = 0). These are descrived in [C, 5].

Some typical plots of tne solutions are shown in Fig=
ures 12, 13, and 14 for the absolute number of survivors{
the difference in survivors, and the ratio of survivors, re-
spectively, at the end of the battle. The parity points for
variations in the initial numbers of the Red force are indi-
cated by solid c1rcles. *m:;:.,.c*y obvious from these fig-
ures is the fact that the assault speec is an 1ntegra1 factor
in pred;cting parlty pelnts.-,More important;y. there appear
to be optimal aésaulfspoedsguch_that déviations from these

bptimaﬂcah»habe significant éffgcts on the battle réSults.,

1The principal factorc in the classical Lanchester parity
. eonditionc.
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3, atr = Rs’ a2 percentage p of the remaining Blue
force (Ms) continues to advance at speed v with-
out firing. The remaining (1 - p)Mb Blue units
stop and provide supporting fire on the Red force.

4, Red fires only on the moving Blue units.

The attrition-rate functions which result from this situa-
tion are shown in Figure 1t. The Red force attrition rate
varies with range since Red units engage closing Blue units.
The Blue attrition rate is a constant, ag = ka(Ra - RS),
since the supporting fire Blue units remain a fixed distance,
Rgs from the Red units. Solutions to the. resultan. differ-
ential equations have been obtained and some analysis of
optimai tactics (assault speed, nercent force split, etc.)

conducted. This work is described in (C, 61.

4.3 Edtcrogéucounorprac Resulte

. A long-range objeetivo cf the rc;earoh program is to
obtain usablc analytic :olutions to ine zsts of vcriable-‘
coeffieicnt diffcrantial equation. used to describe combat

p "';anon; ho*croccnoouc forcci. Th.ti aro equationc 1 and 2 in

' scctions di:custeﬂ rctcarch to

":obtlinvloluticnl fur stlplifitd fornn of thll. oquntiont for j,f3 :: 

cus Ibweo..aad . tirt-cupport aituatian which rctained

: thé calplﬁxity of th‘ vaziablo tttaitton-nt%c fuactions. _
t".aoacareh hno btca condaotqd oa nnothnr foml o! siaplification




in which we retain the generality of hetercgeneous forces,
but consider the attrition-irate functions to be independent
of range for all weapons in the battle.

Previous research efforts in this area (Snow, 1948) de-
veloped solutions for this situation under the assumption
that each Blue group distributes its fire over all Red groups
and each Red group distributes its fire cver all Blue groups.
That is, the allocation factors eij > 0 and hji > 0 for all
i and j. This assumption appears to be highly .urealistic in
that it requires ineffective weapons to fire at targets they
cannot destroy (a rifle firing on an armored tank) and an
}over-allocation of firepower (a long-range missile firing at
an infantryman).

A general solution fo the heterogenecus-force, constant
attrition-coefficient battle model for any allocation polizy
- has been developcd.. Thc solution msthods’jrd simpiifiod,-
-and thus more uscful for analysis purposcs. when the optimgl}‘

zero-one allocatzon atrntcgy is euplcycd. _“ |
_ ucﬁirai ancIytic~§qut;onl o thi‘n~.~.agchcous-foxee,
'i;‘varicble-coefficicnt battlo nodcls oau¢~ not be dov&lop¢d.~‘

. 5__ :A nun.rical proccdure was davclopcd to sclvc thc equations

';j1 for ainplificd tactical situations ia which thc hotcrogqncous

  ,conbat groups nay havt difforcnt location: and uhcr. the vari-
.f.ation in attrition coc!ficicntc vsth rnnga is cxplicitly
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wonsidered for each group. This procedure, which is de-
scribed in [D, 3.0], was developed primarily for use as a

research tool.
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Chapter 5

RELATED RESEARCH RESULTS AND FUTURE NEEDS
Seth Bonder

The research described in this report is viewed as the
beginnings of research activity to develop analytical models
of relevant military processes that can efficiently and ef-
fectively be used in analysis of both small and large-scale
military activities. This long-range objective will require
the development of analytic structures for each ¢f the rele-

vant military processes (such as combat, reconnaiscance.

logistics, etc.) and research on methods of combining them into

an integrated set of analytic procedhres.

Modeling emphasis to date has beenldirected to the de-
velepment of differential models of the combat process and
associated~allbcation strategies., This chapter summarizes
some neiated modéling-results developed under the cited con-
tracts and liéts a‘few areas deemed‘importént_fov future

research.

6.1 'Praiimiiaby‘ﬂbdeling‘of Survefllance Patrels
 Except for the intgliigence factor included in the com-
bat model atructuré.jthe}d*fférgntial models of the #ombat

aéti#ity éssgntiallyvi}gure-the iﬁtélligenceugathering §r

| vecohhqissance proéebg that could reasonably have a large

‘effect on ¢e$§dt effedtivtncss-hrcdictions, especially when

ke




one considers its interaction with the allccation Jtrwtegy(
it was thought that many of the eéxistiag vearen ara recon-
naissance theories would be useful for predicting nc anount
of intelligence-gathering capability pcssessed by a *actical
unit. A thorough literature search in thi. arca, havevar,
indicated that existing theories are lecs than useiu. fono
this purpose {Moore, 1970). Most of the research eforts
have been devoted to a development of strategies 1cr thne op-
timal allocation of search effort and little to the dev:lop-
ment of descriptive models of intellicence-zathering prccesses
nor its interaction with the combat activity, i.e., "sub-
sequent action." The existing results do not conszicer im-
portant aspects such as‘intermittent target visibility, mul-
tiple targets, moving target:, and others. accordirgly, a
small part of the research effort was devoted to tiw deveicp-
ment of preliminary mcdels of the intelligenée-gath‘ring
-prucess, spécifically surveillance patrols.

The surveillance situatior modeled is shown in Figure 17,

: ﬁhcre 

speed ot movement between subareas
A = total area searchecd,

a;. 3 area of ifh'éubafea‘searchad,
'di : distance between subareas (i - 1) i i,

n = numbec of subareas searched. _ s




Surveillance
Unit

rﬂq"ugjo

Figure 17 Surveillance Patrol

Search in successive areas A may be considered continuous
crearch associated with a mobile force sitvation. Search in

just one area A might be considered a periodic area surveil-

lance to obtain general information during a stotic situation.

The models were developed on the assumption that the sur-

veillance unit moves into a subarea and, as a unit, scans the

area as a single sensor, The pctrcl leavee a subarea and 3003~ 
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to another at the time it detects the target's presence or

after a specified time during which it has not detected a target.
A number of models of the surveillance activity noted

above were developed, each differing in assumptions regarding

the stochastic nature of the visibility process (existence of

line-of-sight). Mathematical expressions were developed for

(a)
(L)

(e)
(d)
(e)

£)
(g)

These expressions explicitly include the target's location, '
effects of the sensor capabilities, mobility of the sensors, E
and the line-of-sight disturbances of the terrain. The mathe-
matioal developments are described in [E, 21. |
Medelisg cffort was al.o directed to thc development of
.m1 thM u-uetu:-u to describe the vilibil"ty

the p<cf of “he nmumber of targets detected, and .
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the probability of detecting a target in a subarea,

the probability density function (pdf) ifor the time ]
to detect a target in a subarea, given it is de-
tected,

the pdf of the time spent in a subarea,

the pdf of the time unii)l the first detection,

the probtapility of detect' =g a target during the
patrol,

th~ paf of che time spent searching the total area.

i it

e L0 A

!ln.todnl 4nv.lepad considers
' fftv httu.-n tha sensor and
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(1} the probability that the target is visible for a o
given time t;

(2) the pdf of the length of time that a target will
vemain visible, given that it is visible at t;

¢{3) the pdf for the number of times the target will be
visible in a fixed interval t.; T

(4) the pdf for the total time of visibility in tgs

(5) the pdf for tbe number of visibie targets at time t
if there are N independent targets;

(6) the probability dansity functior for the number i
of sightings in (0,t.) 1f there are N targets. '
This work is deseribed in [E, 31. ‘ {é

L Py
5.2 Stochastio Duels with Reliability and Nobility .1

The development of the differentisl models o combat
extended the carlier Lanchester formulations to include : o
lobility’éf $oth forée-, nicroicopic d&thilt 2% the u.hpon _ ,
cystnns in the att*ition ouofxiciuntu. ann the fact hat the } *3'H

7attritien eoofficiantu vary wiven foroes q-ploy -ob‘lc wunpon

lyst.ul tni. upproach was takcn btnod on the 1ud'n‘nt tfii; 5?_}
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of the duellét's wéﬁpons and initial elements <f mobility.
This research is described in [F, 11].

Previous work in stcchastic duel theory included some
natural limitations of weapon systems in duels involving
limited ammunition supplies ancd time limits. Another natural
limitation of a weapon is the reliability of its firepower.
The denigration of a weapon may be due to factors such as
severe natural environment, lack of preventive haintenance, g
and the use of the weapon when fired. The first two factors

concern the studv of reliability and maintenance per se,

while the third factor is more complex, since more than the
temporary loss of firepower is at stake in combat.

Models were developed to describe cataé;rophic failures

of firepower, leaving the duelist entirely,helpieés or'foroing

him to withdraw from the duel. Reliability is treated ba{:n
as a function of time and as a funct1on of the number of rounds;

fired, the latter as a more realastzc model whxch relates

cnd thc rcaults are conparcd uith those for the éorresponding
'fundunnntal" otochastie duci.. | ' L

) A uiupliticd nbéol wcl dcvolopcd to ruflect the effuct
ot ubil;\ty in a ttoahut:lc duel. | 'nu modol i.noorpoutes

S
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dependence occurring due to the basic dependence o’ accuracy i.

and lethality on range to the target and theArahge vari-tion

By

due to movement of the weapon systems during the duel. ' i

5.3 Puture Research -
During the course of research effort described in this i
report, it has become increasingly clear that research in

other closely related areus will have to be performed in

order to develop a reasonably complete spectrum of analytic

models for defense planning. A brief description of some of

these areas is given in thie section. i
Raaonuctccanaa Researoh
A snall -amount of research effort was devoted to the

dcvclopnnt of preliminary nthmtical cmctms of sur-

procoas, sensor detection upabiutiu. and -nbtlity of the

:and to dctcninc opthal ucrch stm;iu dnn mncit

[ - L - —
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be consxdercd in this area ;nclude

(a) What model structures are needed to interface the
reconnaissance activity and subsequent action?

(b) Can the effect of "false alarms" be effectively
included in models of the reconnaissance activity
when subsequent action is considered?

?: (¢) What effect will consideratiun of subsequent action

0 A : g Y
e P ANy T )

have on the optimal allocation of search effort?

Ly »
v m—————

Large-Secals Unit Nodeling - ;

Although the long-range objective of the research program

S po—

is to develop models for both the microscopic weapon system

' planning problem and the nacrosQOpic one of force structuring,

|-~ —_— R et s 2 e e S ot

iaitinl efforts hnvo been devoted to dolcribinz the micro-

-copic structure of combat. Models to predict the attr;tion ‘ :
gg' cnafficionta are bnin' dnvtlcpad from elemental character— = y
t - o 4

S ' isties of inﬂividunl weapon systems. These are thcn uscd as

3 S
{! | diotznct pnrl-.torc in the hct.ro.on-ous-force lodcl for cach ) SIS

7 o i (noup in the Blu. forco and cach b ;roqp in tho !nd foree»}ifl_ ‘ T
ij- 1' »- Thnao a;ponﬁ to bc punbl-l. cf ci.o 1n uning thc.c nodnla "uFf{‘ :,?f;
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1. The direct app’ication of the heterogeneous differ-
ential equation formulation to large-scale force
structures by reducing the dimensionality of the
model. Methods would have to be developed to aggre-
gate the attrition noefficient for different weapon

groupe to attrition coefficients for taotical unifs,
which would then be used as input to a large-scale
heterogeneous-force formulation.

2. Develop means of usihg the ou*put of the micrézéopic

heterogeneous model (which uses attrition coefficients

for individual weapon groups) as imput to other, per-
haps differentizl equation type, modals of large-
scale force combat activities.

> P Y w———TY

Clo.c-Conbat Roccaroh

The models currently under development will provido pre-
dictionn of four basic din.naions of caubnt--tinn. cpaco.
caaualtieo, and rescurces cxpcndod. Unu.lly. cnuo a.asnru

'of effectiveness such as the vut .0 cf Qurvivomz. tht difflr—
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Accordingly, it is felt that research is needed to assess the

predictive capability of these measures for different combat

activities.

Approzimations to Variable~Coefficient FPormulations

A2 shown in the solutions to the homcogeneous~-force models

i Gt v o WS wm

with variabie coefficicnts, variation in the attrition co-

efficients during a battle appear to have a significant effect

o)

e T

‘on the baftle results. During some of the applications of

f ji. the differential- combat model in the Main Battle Tank pro-
gram, however, it was found that in wome situations the re-

o

sults of battle could well have been predicted with a con-
utant-ooctﬁciunt nodel of the b{ttlt nﬁvﬁy. “Accordingly,

q}pmpﬁa‘to “av-mge -

- - o——— © ———

it ic of research i.ntcmt to sed if an

i
z . 4ttrit.on rate over all ranges of a battle can be determined
1 _ ,.uﬁio?.. whan used in a éormtmt-é&ffi.cicnf foziﬂlation. wouid
3 - producs tilillr results to the vtrilhlo-oeofficidht rctero-
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are developed from the more fundamental distribution of the
number of rounds required to defeat a target. Thus, there
exists a means of determining the amount of amnunition re-
quired to obtain a specific level of combat effectiveness
predicted by the diff._cential combat models. Since the lat-
ter also include the spatial distribution of focrces and their
maneuver during engagements, POL requirements can be deter-
mined from the specific capabilities of vehicles employed.
Thus, the models assume an infinite inventory of ammunition
and POL with no constraint on the combat activity. Research
should be directed tc developing an explicit logistics model
which can be integrated with the combat formulations to re-
flect louiiticl restraints on the combat activity.

labitity Rcccaroh
B The 'chﬁt of the mobility of conbat units is connidorad

| in the diffnvential -equation formnl&tions in a rather re-_

RS trictive scnte by exaninzng tho effect of mobility during tho
iengagement.- This night mora &ypropriatcly b. called the ef- -
- fect of mnnnuwer, ‘with mobility beia: reaervnd fot the atrato- :

B '3_-~.gic asptcts ef tnmporting the um..s to m batne aru.»,__ |
| i5,010ar1y, ia the~atrncturing of Iargcaccqle forcca, the plannore
.‘f_ »nust tradc off th. firtpowcr cad ntn.uvor et;abilititiel of }1":

‘fziunits und thn cbility to trantport th‘l to thrc&t artal as - R
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required. It is felt that analytic models of mobility that.
can be interfaced with models of combat between large-ccale

forces are needed.

Command and Control Research

As noted in the earlier discussions of the combat iodel,
the allocation strategies being developed assume not only
perfect intelligence but alsc perfect command and control.
That iq, given one determines optimal allocation strategies,
can the commanc-control system implement the assignment pol~
icies? Research in this area should be directed to determining

1. how to reflect imperfect command and controul in the

combat model formulation, especially in its inter-
action with the allocation policies, and '

2. how to predict the amount of command-control capabil-
ity possessed by a tactical or strategic unit.

Irtalltacncc Ruccarch

Thc diffirontial models of combat include an intelligencei

“'factor as onc of ‘the clemcnta in the attrition eoefficient.; |
© This f&ctor ic includud to acrount for the loss in efficiency ‘;5 PRy
. (cffcctiv-nnst) of a. tiring wtayon when it is firing on either §: “T&“;"
__'tarxct: nlwoady attrited or on areas that ave void of target:.f. »;
'fA.lndol wll dhvilapca to prcdict the intolligcnce factor S
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(see equation 38, page 29); however, methuds of estimating
only one of its input parameters--the experted time to fire
on a live target--are available. Research is needed on
methods to estimate the other parameters of the intelligence

factor model.
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Appendix A

N " TEST OF THE GENERAL MODEL

Seth Bonder and Robert Farrell

| - . _ As noted in the introductory chapter, the cbjective ol
- this pesearch program is the development of analyti< models
for defan5° systems planning. . Chapters 2, 3, and b summar-
iz zed the hasic structure used to describe the combu” process.
the develupment of models to predict 1nputs to the strucrure,
and research cfforts to obtain analyt;c SOlLtlons to the com-
bat formg;atlons. Conceptually, one may view all the results
.déécribed earlier as hypotheses or_thecries that need be
~ verified agéinst-ﬁctual data, gf atileast comphred to. the
‘ reaults ‘of -detailed Monte Carlo ;;mu.atlons.__4
: Under a 3eparate contract with tne niFecrorate, agapon
g _Systems Analyszs. Off;ce, Ass;stanh ?lge hhléf of bta-‘; u bi‘

‘"Atny, a study was conducted to compa“e the cowoat ;redzctxou, 1_“

».gcneratad by the different1al madel of comba* to-'HOaﬁ pzém ,I;{'“f 1ﬁ>'f?

'dieted by more datailed honte Cario sxmulatlon tthS-_

"";IThis QXudy was - canﬂuctsd by Vecter keoe&rcr, Inrorpgrated‘
whost princxptla d&vclcped the- methods aesc:xbed in thiz

oy
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tactical situations used in the TATAWS-III study, which is
part of the overall Main Battle Tank (MBT-70) study pro-
gram. The Individual Unit Action (IUA) Monte Carlo simula-
tion of ground combat was used to evaluate candidate main
battle taenk systems and force structures of proposed bat-
talion task F0r¢es.

Figuia 18 depicts «.e of tne tactical plans considered
in the Mair Battle Tank program to which the differéntial
model of combat was applied. The tactical plan shown is a
Blue attack engagement against a fixed Red defensive posi-
tion. The attack is conducted along three major axes with
four individual routes of advance per axis. Each route con-
sists of individuel mair battle fank candidates and/or sup-
porting armored personnel carriers equipped with'répidéfire
weapon systems. In addition tO»these_maﬂEUVQr units of
main battle tanks and personnel carriers, the Blue attack
ferce had long=range missiles ahd{short-rangeihissiles,
snawﬁ in the figure. The defending force is éohprised of
tanks, missilesy and-armored’persgnnel carriers equipﬁed
with rapid-fire weapons systems.

The Monte Carlo S;mulation of this engagement considerad
the movement, acquisition, and combat activity (duels) of

each and every unit in the battle.> Maneuver, in terms of

I-Some of the engagements considered as many as 100 individual

weapon systems.

PR
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attack speed and accelerations, over different portions of
the terrain was considered for each wesapon, bassed on pre-
pocessed terrain analysis. The existence or nqnexistg‘nce:
of line-of-gight between weapons systems for each route to
all o"t‘her_ weapons systems was used as input. Preprogrammed
target priority tables were used to specify the a.z_uoutioa_ '
of individual weapons to targets. A replication of &e si.lt-;
ulation consisted of moving each of the :ystcu dewn. their
prespecified paths and evalutm by Monte Carlo m ths
acquigition and attrititm procese (the fmmu; duni
event) for each waeapon systen dur:ln; ths emsa - th ca- »
gagennt. 'rhe engagemant wu replimod RORY tia‘u to nbﬂ
tain a level of statistmal mw f.q- m ' |
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The attrition coefficients for each group on appropriate
target groups were calculated using the same basic acquisi~
tion, firing time, accuracy, and lethality data used in the
simulation. The coefficieits were computed at 250-meter
increments to the target out to a maximum range of 3,000 meters
and stored as attrition-coefficient lookup tables. The ale
location factors (eij and hjl) employed were based on the
priority tables used in the simulation.l The intelligence
factor was set equal to 1.0 since these effects were not con-
sidered in the simulation.

‘Mobility and line-of-sight were considered in a determin-
istic manner similar to thét employed in the simulation. Av-
erage speeds and lines-of~-sight over segmenté of the routes
were input for each of the aggregated groups. Thus, a group
was moved as & whole, and vigibility did or did not exist
to the group as an entity. -

It was noted inféﬁaptép 4 of the text that closed-form
solutions to the genéba;sﬁéterogeneous-fdrcé, variable-coef-
ficiént. differential-equation model;do not exist.»aAécord~
ingly, the equations were solved'numericéiiy uéihg thé_pre-

computed attrition ppé?ficiénts‘and prespeéifieﬁ allocation

i

factors which webg‘sﬁ§ra§ as.IﬁdkuP taplés.

lA separate acquisition model uas developed to estlmate the

pergentage of surviving targets that were detected and. ac-
cordxngly, could be. allacated firve. . .
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Using this approach, the model was applied to short-
range defense and loang-range attack engagements considered
in the Main Battle Tank study program. Using these engage-
ment types, six separate runs involving different weapon
systems and force structures were made for comparison with
the simulation results. These comparisons are showh ih
Tables 1-3.

Table 1 presents a comparison of the résu;ts qf c?é of
the short-range -defense enzagements. The initial numbers of
forces and the numbers of survivors at three ‘analysis pcin:s
as predicted by both Monte Carlo simulation and the analytic
model- are given. The analysis points are dcfingd by the
percentage of Red tank survivors: low equﬂl}éﬁ 56:?c#cent;
priﬁcipnl equal to 50 parcent,‘dud high approkiaately eqﬁtl -
to 20 percent. The times at which these analys;s points are
reached in each of the models is also given. Two sets of ﬁ? )

results at the low analysis point in the analytic mndel n&g

~shown since there was an appreciable attritzon in thc 2%6—

250 time interval.

Table 2 presents the comparisons*af tank survivdrs at

the three analyals poxnts for the other or shertavangs 43-  .11
fense engagements, and Table 3 presents thc ceupirisonl cf:l',1

_the tank survivors at the three analyszs points for thc
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Table 1 S "
GOMPARISON OF SURVIVING FORCES S
’ Run Number 7306 ,7 L o
Short-Range Defense | '
Initial Numbeérs
16 Blue Tanks . KO Red Tanks
. 6 Blue Short-Range Missiles 0 Red Missiles
6 Blue APC . 12 Red APC
3 Blue;ﬁgpg-kapge Missiles
ANALYSIS . TATAWS . - 4 S |
POINT __WEAPON SIMULATION TIME  ANALYTIC ~ "TIME '
- Blue Tanks 18.90 o 15.1/13.9 .
Blue SR Missiles  5.)0 | €.0” ]
sou - Riue APC 5.8 242 6.0"  240/250 ;
L, e $lue LR Missiles  -2.73 - C 3.0 4
L) ‘;kﬂd ?‘nk& . %8.00 . 30.4/24.u 3
R . Rod sm&es e T ——————— E

¥
N0 T S

c »!&ﬁm aa uissiles 4.87 8.0 .
Pein- Rue APC 5.73 263 6.0~ 260 4
3.0 | g

8.2

_"gﬁﬁal .gigeri:*nisszles '95’33 ' ,
'Ttsag; ; snd*ﬂissgles ' --:-- | L emense—
" Red A?¢ e 10.33 ’ 0.2

R ‘Blue ?anks $.40 0.0

RS Blue SR Missiles  2.97 } : 5.8

o Righ Blue APC 5.20 327 6.0 290

;",5¢2§‘>_ ‘Blue LR Missiles 2.00 - 2.9
P Red Tanks . 8,90 . 7.2

Red Missilcs ----- e ———

o
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three 1ong;range attack engagements. The Monte Carlo simu-
lation results for runs 7355 were not provided by the govern-

ment for comparison.- The larger differences in tank sur-

vivors in runs 7105 and 7106 were attributed to the fact that

the input vulnerability data for the Blue tank on the Red

missile used in the simulation run was approximately +twi:cs

that used in the analytic model run.
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PART B

ATTRITION-RATE PREDICTION METHODS
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The overall stru~ture of the differential model . *
combat 'tas presented in the precading part of this report.
A basic input to this mcdel is the attrition rate, which is
the rate at wnich a firing weapon system can destroy live

targets when it is firing at them. This part of the report.

describes methods that have been developed to predict the

attrition rate for a spectrum of weapon systems.

Chapter 1 describes our concept of the attrition rate.
Rationale for employing the differential équation structire
of combat (given in Part A) with this concept of the attri-
tion rate, and an operational definition of the attiition
rate tor us. in this context, is presented. Chaptérs 2, 3,
and 4 contain descripticns of alternativé developménts of
attrition-rate predictior wmodels for various types of weapon
syctems. The attrition-rate models are developed using
different mathematical approaches. Our_intentris pedagog-_
icél, in that we hope it will acquai. . :e user with an-
proaches to modify or develop attriticon fates for'syStemé‘

other than those modeled in the research. program.

Preceding page Munk
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Chapter 1
INTRODUCTION

Seth Bonder and Robert Farrell

1.7 (oncept of the Attrition Rate

The attrition rate for individual weapon systems is
assumed to be dependent on a mulititude of physical parameters
of a weapon system which describe its capabilities in such
areas as acquisition, firing accuracy, delivery rate, and
warhead lethality. Experience with existing .ystems suggests
that these characteristics are dependent on the range to a
target and are stochastic in nature. That ig, the ettrition
rate is functionally dependenf on the range between combatants
and, for any specified range, is described by a probability
distribution. In the vernacular of the mathematician, the
attrition rate may be viewed as a nonstatioriary stochastic
process When forces employ mobile weapons. This is shown
in Figure 1, which depicts the two distinct variations in the
attrition rate for a single weapon system type agéinst one

target type: (a) the stochastic variation at a specific range,

- which is described by the conditicnal probability distribution

.;f(d{r), and {b) the varviation in some function of the attrition=

rate random variable with range, which is called the attriticn-

rate fnnétion._a(r)_.1

1 :.“ ‘. . . ‘ . N X X p

For clarity cf discussion, variatione in the attrition rate due
to changes in target posture, envircnmental effect, etc.,

which can be included in the mcdel, are nct presented.
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o alr)

Range r

Figure 1 The Attrition-Rate Process

The fact that armed conflict is stochastic is well rec-
oynhized andbis one of the reasons for conceptualizing the
attrition rate itself as a nonatationary stochastic process,
Pla,r]}. Assuming the process Pl{a,r] could be predicted,
one would like to incorporate the range and chance varia-
ticns of the attrition rate explicitly into a model éf
cqmbat among heterogeneous fgrces. _The'rate_cbncept éug-

gestcd that such a model would be either a cifferential -

, équa‘ioﬁ (con?inucus&%tate variableé) or a dif renaemdlfa

reren*lal equatmcn (dlSC¥étﬁ~Stdtﬁ varmab‘ee) structurf in

which the evant coeffxcxenta were nsnstatzﬁﬂary ﬂxucha Suteh

}rovesses, i.e., the Pta »7] and P{ﬁjl,rj far akl weawon.

ij
target group pairs. Initiai scudy stror sty 1wd1ceted that. o
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in the foreseecable future, there was little hope of solving
either of these structures even for simplified situations. A
research decision was made to suppress the chance variation in
the attrition rate and concentrate on structures of combat
which explicitly involved the range variation in the rate when
mobile weapons are employed.

Discrete-state stochastic process models were considered
in which the transition rates are nonstationary, i.e., as vary-
ing with time. The literature indicated that discrete-state
stochastic process formulations of combat“have been difficulc
to solve =ver then the process is considered to be Poisson
(Lanchester type) with stationary transition mechanisms. Tie
few solutione obtained with homogeneous forces have been of
~ such complexity as to délimit their~usefglness for analysis
purposes (Dolansk§, 1964; Clark, 1968). Accordingly, iﬁ was
felt that useful solutions for general discréte~state stochastic
process formulations with nonstaticnary transition mechanisms
coulé'hot 55 obtaiﬁed in the near futuregl |
| Aithough the appropriafe Léngér&nge nbjective is to de-
| veiep stochastic formulatiqns df‘hétenaganeous-force a?med com=
tat such as those noted above, Wé”fglt that a more reasonable
ihtermediate;gbjectiva would;bé-the,géyaxggmept of detsrmin-
| _-;sti@fomuluians, and;,-ge,lu'tkiqas{; w}‘xl’i‘;éh included the non-

‘staticnary aspects of the Atffitioﬁﬁsata at the gxpenée of
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explicit consideration of its stochastic elements. Accord-
ingly, *he coupled sets of differential equations described
in Part A of this report (equations 1 and 2), were chosen as
the mathematical structure to model the combat activity.

The nonstationary aspect of the attrition rates is included
7in the formulation as the wariable coefficients in the dif-
ferential equations, where the variable coefficients are ap-
prépriately defined as the attrition-rate funection, a(r).
Thus, there is one value of the attrition rate {for any fir-

ing weapon on a specific target group) at each range.

1.2 Definttion of the Average Attritior Rate

Initially, the attrition rate at each range was defined
to be the arithmetic mean or expected value of the attrition-
rate random variable. Barfoot (1969) suggested that a more |
appropriate definition of the attrition rate, when a single
value is used at a specific range, is the harmonic mean of
the attrition-rate random variable. The appropriateness of
this definition for use in the differential equation model
of combat is seen below. |

Consider a homsgeneoﬁs»force battle in which the initial
numbers of Blue (M) and Red (N) forces are suffigiently large
50 that neither is totally annihilated. Each Blue weapon
system is engaged in a renewal process of attriting targets,
il.e., the times between kills are independent and identicaily

A
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distributed random variables. From Blackwell'- theorem

(Parzen, 1962, p. 183),

JE—— T T T . o - - . dt T
Lim Prlrenewal in (t, ++ dt)] = =~ ,
00 W
where

4 = the expected interrenewal time.
Therefore, the expected number of Red kills in (t, t + dt) is
Elnumber of Red kills in (%, t + dt)] = E&E, (1)

The differential equation homogeneous~force model of combat

states that

dn = Elnumber of Reu kills in (t,t + dt)]
r qndt: (2)
Comparison of (1) an€ (2) suggests thet a be defined as 1/u.
More generally, thec definition of the attrition rate to use
(f;? a specific raage) in the differential equation structure
of heterogeneous-force compat is

def 4

a4 (at range r) = ETTT_T?T , (3)

where

E[TijIrJ * the expected time for a 51ng1e Blue
system of the 1th group to destroy a
passive jth group Red target, ‘given the
‘target is at range r.
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This definition for an average value of the attrition rate at
range r is equivalent to the harmonic mean of the attrition
rate when it is viewed as a random variable at range r. This
definition also leads naturally to defining the range variation
of the attrition rate as the variation in the reciprocal of
E[Tijlr] as the range to the target changes. The range varia-
tion is called the attrition-rate functiom and is denoted by

aij(r), as used in the differential equation structure of combat.

1.3 Taxonomy of Weapon Syatems for Attrition-Rate Models

Because cf the definition of -the attrition rate given by
(3, reseérch on attrition rates has been concerned primarily
with the development of time-to~-kill probability distributions
and their expected values for a spectrum of weapon systems. To
ensure that the attrition rates developed are general, a taxon-
omy of weapons systems that is not dependent on physical hard-
ware characteristics (such as caliber) was developed. Rather,
the taxonomy reflects characteristics of weapons systems that
would affect the methods used in preuicting the attrition rates.

The taxonomy is shown in Figure 2. Weapcn systems are first
classified by their lethality characteristics as having either
impacfetﬁ-Eil}'mechanisms or area-lethality effects, Within 339“ 
f'fhesa patégofiés,~we have found it useful to_further classify
weapon sy§tem§»0n}the basis of their methods of usihg fiiing in=-

formation to ¢ontrol the svstem aih”paint and their deiivevy
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LETHALITY MECHANISM:

: 1, ImpacT
2. Area

T

. Fire DocTRINE:

1, REPEATED SINGLE SHOT:
*A)  WiTHoUT FEEDBACK CONTROL OF AIM POINT

*3) WITH FEEDBACK ON IMMEDIATELY PRECEDINA
ROUND (MArkov FIRE)

c) WITH COMPLEX FFEEDBACK
2, BursT FIRE:
*a) WITHOUT AIM CHANGE OR DRIFT IN OR BETWEEN BURSTS

*B) WITH AIM DRIFT IN BURSTS, AIM REFIXED TO ORIGI-
P NAL AIM POINT FOR EACH BURST

c) WITH AIM DRIFT, RE-AIM BETWEEN BURSTS

3, MuLtirLe Tuse FirinG: FEEDBACK SITUATIONS (1A, R, C)

*a) SALVO OR VOLLEY

T 4, Mixep Mode FIRING:
Fo A) ADJUSTMENT FOLLOMWED BY MULTIPLE TUSE FIRE
: *p) ADJUSTMENT FOLLOWED BY BURST FIRE

o “ INDICATES THAT ANALYSIS OF THIS CATEGORY HAS BEEN PERFORMFN,

" Figure 2 WeApon System Classification for the Development
of Attrition Rates :

-e
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characteristics, i.e., the firing doctrine employed.

The fir.i cases analyzed involved single-tube firings ir
which launch of a projectiie occurred only after the observeation
of the effects of the preceding round. These are called "repeatéd
single-shot" doctrines in our scheﬁa, and are'éométimés calind
"shoot=-look-shoot" doctrines by other analysts. Analyses have been
undertaken of two subclasses: (a) those in which no use is made
of information obtained from observations and (b) those in which
the observations are treated distinctly depending on whether they
are a hit or a miss, leading to different types of correction in
aim point for these two cases. This subclass is called "Markov
fire." Other more complex feedback situations have not been
analyzed.

The more complex doctrines involving "multiple-tube firings"
and "burst fire," have been analyzed separately. These are clas-
ses of systems for which the projectiles may be launched before
observation of previous round effects. Burst-fire cases analyzed
include those in which rounds are all identical with respect to
accuracy (no drifting or controlled alteration of the aim pointf
and those in which the rounds withih a}burst vary, but the bugsts
are reéighted to the same aim poiht. All present !ﬂély#es ha@é 
been based on fixed-length buvsts. Tﬁg complex'caSg iﬁ §hi¢§ 
'bursts are re-aimed on the basis»of_obsévv&tion‘hbeﬁngt been
;nalyzed. Preliminary anquses‘have heéﬁ canductqd of-muifiple»
tube firing‘cases, and it has been determiaeé that the éftri{ibn
rate for both volley and sa:vo'fire may Nelrhpregéntad bv thé same

formulae. The mixed-mode firing doctrine .n wajchy period of

[y

era
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of single-shot fire is foliowed by burst fire has also been
analyzed.

It is important to note that this classification scheme
of weapon systems is not complete and that even in the areas
where analysis has been conducted, the formulae developed do
not necessarily represent all ﬁeapons systems in the appropriate
category. ‘Uss.:f‘tﬁefattbitionerate~fprmulae presented should
be preceded by a careful chparison of the assumptions used
in developing.them with“the lethality characteristics and firing
doctrine of the weapon system being considered.

The succeedlng chapters of this part of the repo“t de-
scribe the detailed development of attrltlon rate models for the
different classes of weapon,systemsg rThe develOpments are orga-
nized by the mafhémaéical assumpticné and techniqgés_used,
and include multipié approachea'in oﬁtgining-fhe:same and
similar results in some of the cases. Our intent‘iq peda~
goglical, in that we hope it wlll dCQdalﬂt the user with apprsachec
to mod;:v or develop attrition r&tes for sya*emb “tner f‘an

those modeled in the research progran.-_{ﬁ

~

Chapter 2 utillzes detailed probahxlwty analkses to deter»’

mine the complete probability éistrxbu*xon aL_rﬂe t;new*mw-

kill random,var;able.undgr the. fhiiowirg assumz?hans

(a) The syctems are *mpaetuletra 1ty, repeateﬂ §1rgae-i,$'
shot ,9,t,mg of class a8 or 13. B .

. "4'
N




{b) The probalility of kill given an impact is identical
for every round fired,

(c) The time preceding the firing of the first round is
not randcm, and the conditional times to fire a
round after a hit and after a miss are not rardom,

(d) The probability that a round fired after a preceding
hit or miss results in a hit or a miss is not in-
fluenced by the knowledge of other history of the
engagement (such as the number of rounds fir=d or
the number ~f previous hits),

-{e) The engagement terminates immediately on a kill.

‘This}chapter alsoy presents straightforward probability anal-
.S5§§es of the expected time-*o-kill in the impact-lethaiity burst-
fire prodlem which do not involve calculations of the complete
- : probability distributions.
Chapter 3 presents an alternative mathematical methodology
: ff; ‘for the development of probability distributions and expected
\7f{¢41ues of the time-to-kill variables in the repeated single-

.- shot-impact-fire case. The method permits relaxation of as-

© summpricns -(b) and {c) above, but involves the ertensive use of
.7 .7 lanlase trersform analyses of random variables. Thus it is
"’s&mewhat nore general, but also more mathematically difficult,

© &0 thaf the methads of Chapter 2.
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Chapter 4 presents a very general method of determining

the expected time to kill a target for a broad class of weapon

systems which includes the repeated single-shot impact-lethality
category. The method§ usrd dn not determine the full distri;
bution of the time-ta-kill random variable. The methods,
although baaed in the theory or Markov-“enewal or semi-Markecv
processes, do not require detailed understandlng 2% the theory
in its application. Only very general assumptions concerning
the fifing and lethality processes are required.

Chapter 5 describes the development of attritien-rate
Aodels for area-lethality systems. The methods are straight-
forward detailed analyses of the process, similar irn general
philosophy to the burst-fire'analySeé of Chapter 2, but differing
in tachniques. The analyses are based on pfevioasif dcoivnented
models of the artillery fire procesc. This chapter dues not
suec1f1ca11y concider the kill ~ate in terms o the :ime-to-kill

random ver;able.
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Chapter 2
IMPACT-LETHALITY SYSTEMS
RiPEATED SINGLE-SHOT, BURST, AND MIXED-MODE FIRE DOCTRINE

Seth Jonder

This chapter presents the development of models to pre-
dict the attrition rate for many of the weapons classified as
impact-lethalitv systems. Systems of this type aim at a point
target and projectiles must impect upon the target to destroy
it. Methods are developed for repeated single-shut, burst, and
mixed-mode single-shot Markov and burst-fire doctrines. The
results are models for the probability density function and
the expected value of the time-to-kill randon variable at
4 cpecific range to the target since, by definition, they are
used directly to predict the attrition rate at a specific range.
Although the conditioning on range is explicit in the basic
devinition of the attrition rate (see equation 3, Chapter 1),
the range notation is omitted in the remainder of this part
of the report for clarity »>f development. For similar reasons,

the 1,j notation for weapnn-target pairs is also omitted.
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2.1 Repeated Single-shot, Markov Fire Déctrinel

Consider first the development of an attrition-rate model

for repeated single-shot, Markov fire weapon systems.

Exposition of the development proceeds as a straightforward

analysis of the physical process. Implicit in this type of

development are several assumptions which are listed here as

a convenient summary and reference. These are

(a)

(b)

{c)

(d)

(e)

the systems are of the impact-lethality, repeated
single-shot, Markov-fire class,

the probability of kill given an impact is identical
for every round fired,

the time preceding the firing of the first round is
not random, and the conditional times to fire a round
after a hit and after a miss zre not random,

the probability that a round fired after a pre-
ceding hit or miss results in a hit or miss is not
influenced by the knowledge of other history of the
engagement (such as the number of rounds fired or
the number of previous hits),

the engagement terminates immediately on a kill.

A reasonable physical manifestation of the single-shot,

Markov fire doctrine is given by a main tank gun whose firing

1

Part of the derivation in this section is given by Bonder

(1967), but are repeated here for convenience and continuity
of development. . o :

.
3
18
|
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process is said tc vary from round to round as shown in Fig-
ure 1. Figure 1%‘a) shows the adjustment procedure following
a hit on the first round whick is to replace the crosshairs
on the tapget~-presumably the position of the crosshairs for
the firét}round. Figure 1(b) depicts the "burst-on-target"
adjustment doctrine following a mise on the first round.
Succeeding adjustments, based on the result of the immediately
preCeding round, are made in a gsimilar fashion until the zarget
is defeated. The probability density function (pdf) of the time
to accomplish this result is obtained by essentially modeling
this adjustment process as it occurs, roundbby round.

Since the nbjective of a weapon system is to defeat the

enemy, we begin by defining lethality and its unit of measure- -

mert.l In brief, lethality refers to what hapjens tc the target .

when struck by a projectile. The particular eifect of interest
is the target's combat utility. When this combat utility is

reduced to zero, the target no longer poses an active tactical

threat and may be considered defeated or killed. The definition. -

of a A~feated or killed target is, of course, dependent on the

~arget's mission or role in combat. For exemple, consider an

“armored tank which is f{requently referred to as "mobile,

e

YThe lethality definition is paraphrased from Zeller (1961).

Fowe
L -
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protected fireéower." Some of the tank's compat missions
require primarily firepower, others require mobility' ahd
still others require both firepower'aﬁd mobilit}.aan§ the
definition of lethality must consider which of these are .
" pelevant in the context of a study.

Lethality against a particular target is measured- as
the condlflonal probability of a kill, given the projectlle
| hits the point target, and noted symuc;mcally s elther
P(K|H) or Py. This measure is dependent on the mechanical
damage caused by perforating and/or striking the target,

and the loss in combat utility resulting from th;s mechanical
damagz. Procedures developed to predict this measure for
diff:rent types of targets have been developed, Soe, for
exanmple, Zeller (1961), Goulet (1963), Freedman (1985), and
Meyer (1967). '

Arother. measure of lethality can be defined as "the number
of hits, 2z, heeded’to defeat the target." Since-we'are con-
cernei with destroying the target just once. this measure
1s directly related to the conditional kiil probability by

‘the geometric dena;ty functhn :

= -p0re, . N

‘The number of hits needed to defeat the target, 2z, is initially

used as a parareter in subsequent developments of this chapter.’




The number of hits requifed to effect a kill describes a
weapon's lethality characteristics against particular targéts.
" The wegpon's accuracy capabilities are next considered by
_ dpveloping the distribution for the number of rounds fired
(hits and micses) to defeat the target.
Let
1 ? first rcﬁnd hit probability,

p = conditional probability of a hit given the
preceding round fired missed the target,

c
L

conditional probability of a hit given the
preceding round fired hit the target,.
and consider the sequence of trials (réunds fired) connected
in a regular Markov chain with transition probability matrix
hit miss ' ,
P, hit u bl - uy 0 <u<1l
(1 - P;) nises 7‘ P l-7p ] 0 < §.< } .

It is assumed that p and u are defined only on the open
interval (0,1). We seek the pdf for the number of rounds,
N, to obtain z hits if the sequence of flrzngs “ends with a

niz.! Tnis can occur in two mutually exclusive and

1The proccdure could be extended to remove this assumption

that the firer recognizes when the target is defeated without
technical difficulty but with increased » -\mplexlty of
di:cussicn. ' _
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colleccively exhaustive ways.
£(N|z) = f(N'H-H|z) + £(N'M-H|2) . (2)

The first %erm on the right-hand side of (2) is the probability
that the first and last rounds of the sequence result in hits
given that the z hits occur in N firings. The second term is the
probability that the first and last rounds of the sequence

result in a miss.and a hit, respectively, given th&t the

2 hits occur in N firings.
To determine f(N-H+H|~”) we consider the following combina-

tion of firing results:

In the first ry firings, the event hit occurs everytime;
In the hext s, firings, the event miss occurs everytime?
In the next r, firings, the event hit occurs everytime;

In the next 8, firings, the event miss occurs everytiﬁe;
In_the next 811 firings, the event miss occurs evérytime;

In the last ry firings, the event hit occurs sverytinme,

The joint occurience of these eveats has the prcbability

$ominioms, 3
. .
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rl‘l

sl-l r2-1 ‘52-1 r -1
Pl\.l (1 - u)(l - p) pu (1 - u)(l - p) pu o"pu

31*82+-.o8k~1-(kw1) k

+..l -
rl+r2 ry k . -1

= Pyu (1 - u)k'l

(1 - p)

\

(3)

Since there are a total of z hits and (N - 2) misses,

k
zria’z &and si=N—z.
i=l

»
t
-

&

Therefore, (3) becomes

P uz*k(l - u)k‘l(l - p)N‘Z’k*lpk‘l

1
Accordingly, the probability of the outcome depends only

on N, z, and k and not on the values of ri and 8. The number

of hits, z, can be expressed as a sum of k positive integers

(the r;) in~<;:i) ways and the number of misses, (N - z), as

a sum of (k - 1) positive integers (the ;) in (é;f;%) ways.l

Therefore, the probability that it takes N firings to obtain

z hits, the first and last being hits with probability P, and

p or u, respaectively--where the hits occur in k groups and the

misses in (k - 1) 3roupn#-ia

"Ifreof of thia.ni;crtion-is given in Appendix B, zgfi.
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3 - -1y fN-2-1} z-k k-1 k-1 N-z-k+1 T
? _ Pl(;-l k-2 ¥ (1 - w™ 7p" (1 - p) . E;

The outcome can occur for all values of k such that (1 < k < 2).

Accordingly, ' -
! .
Plu N = 2 N
2 _
f(N*H"H|z) = * Pl Z(:lbuz—k )k -1 k l(N;Z-z-l)(l - p)N-z—k+l
k=2 v~ :
' |
N>z (5)
“

—h
3
E‘

E since (N;fal) = 0 when k = 1 and N > 2.

By an analogous derivation, it can be show:. that ¥

ksl

. | . ]
ENVMH|Z) = (L - Pl)g(;:) 2Ky L ke "é"z‘)(l -plEk

for N>z, (6)

Substituting (5) and (6) into (2) completes th: derivetion for
f

z-1 -
Plu N =2
r A S A ' .
£(N]2) { F, ) (::i)uz"‘u )"‘1;>""’l "kf;")q"““"“ o
k=2 o | 1
X X 1 KfN-2-3 N-z-k )
*ol):(;i)‘u-“’ H I M
\ & =1
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P oed

where Q, = (1 - P;) and q = (1 - p). The reader is reminded

R 3

+

i' 1 - that equation 7 is a conditional distribution which is dependent

on the integer z. i
The characteristic function of (7) is defined as

-3

¢N|z(s) = E[eiSN] = Z eiSN £(N]z) , (8)
N=0

where s is a dummy variable and i = J—l .

It is shown in Appendix R, 2, 2 that

. z-1
is .
. Q.pe e 1is
¢le(s) i Pl + is ] u = L)gg .
l . qe J 1l - qge
(9)

Setting s = 0 in (9),

A sy

(- ]
; 3- _ ¢N!z(0) = Z f(N]2z) = 1,
5 - N=0

proves that (7) is, in fact, a probability density function.

The expected value of N is obtaiued from (9) as

d¢ (s)
| ds s = 0

s | (1 - By)
| | - 1, - wa- 1)

P P

. (10)

e W g G b e e oot e '

-




P
<O
(2%

The density function t(¥iz} for the aumber of rounds that
must be fired to destroy = particular target i- dependenrt on the
lethality and accuracy capcbilities of the weapous system. Two
other important weapon characteristics remaiﬁ to be considered--
the systémfs acquisirion capabilities end its rate of fire., We
consider these characteristics in a manner such that the acgui-
sition and firing processes are serial. That is, targets are
destroyed by sequentially acquiring a target, attriting it by
fire, acquiring a new target, attriting it, acqui:iﬁg PR
target, etc. This is irn contrast to paraile. ecquisi’ Z.n and
firing processes in which rniew targets may he acquired while a
previously acquired one is being attritad.

We include the timing characteristics of acquisition and

firing by defining

1, * the time to acquire tzvge's,

T, = time to fire the first round,

T, G time to fire a round giver the preceding round
was a hit,

Ty F time to fire a round given the preceding round
was a miss,

tp @ projectile flight time,

and consider the following sequence of events from target
acquisition to destruction. The sequence begins with detection

which takes Td time units to occur. The first round is then fired

and arrives at the target area (Tl $ Tf) time units later. If the

S
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first round misses, the next round will arrive (rm + 1.) time
units after the first. If the first round hits the target, and

more than one hit is required (z > 1), the nuxt round will

arrive (1, + 1) time unit§ later. The sequence of firings
after hits and misses is continued unt 1 the final hit which
destroys the target is obtained. T.is description is consistent
with our single-shét Harkév firing doctrine in which the result
of the previous round is observed before the next one is fired.
In this process, rounds will be fired after each of (z - 1) hits
and (N - z) misses. Accordingly, the time to defeat z tarset

may be written as ' -

T s 1; ‘-(T +rp) o (ry iz - 1) (Tm + N -2

R N (11
where )

S AL N T N N P (i)

cp T Tt Ty i)

Equation 11 Zefines T as a linear function of the Jiscrete
random vardable N, and establishes a ohe-to-~uiie transformaticn
betwean their rcspectév: sanple spaces. The densitv function
of T is readily obtained from (7). hy the charge of wvarialies

technique for discrete variabies (Hogg and Craig, 13%9) as




tus

Plu : , _ T = c1 + czzm

13 k-2

’ ) T-c : -c -
P ' ' [—E—]"'-]~Z-l ( — l)'-z-k+l
NPT A Z(z:i)uz-,x(l - wk-1 k=1L %2 &7 '

k-1
k~1 : ‘

T-c (T—c
Z [ C l]..z- - 'l)-z-k
. e} [ - . ChH
v ¢ E (" J’)u“ w1 -k lpk 2 q ° '

T > ci°+.¢2z 4

ihe charasteristic function of T, ¢T|z(s), is obtained directly
trenm (9) by ehploying the following property of characteristic

tunctions:

';'.‘-,I_‘:(:“.) = L'[t?ls‘r]

¢yis _

T N o"ji"(c.’S)
s . z-1

pate, te,2) q pelcz Qa ) 1Co8

e - 4 o+ _l__,______‘,___“ u o+ - P? . (15)
i 1»28 1025
(1 - qe ) 1 - je
A — - — —— s et o— —
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The expected value of T can be obtained from (15), or, more
directly, by enploying the linear property of the expected-

value operator with (11). Accordingly,

u

E[T|z] = ¢ + czE[NIz]

(l - P ) Y
1 (z - 1)(1 - u; (16)
Cl + CZ[ D + P + Z] .

The characteristic function, ¢le(s), and the expected time

to destroy a target, E[T|z], are conditioned on the integer-
valued lethality variable z, which is the number cf hits requirsd
to destroy the target. This conditioning is removed and the
continuous lethality parameter P, (the conditional probability

of destroying the target given it is hit by & projectile) intro-

duced by the operations

¢T(s)

z ¢T[z(s)p(z)
z=1

: isc2
p lS(Ta+Tl+tf) P. + glffp—w-_
K€ i isc,
_ 1l - qge
- is{r +1.2 1s¢ ’
X h £’ (1 - u)pe
1 - (L - PK)e u + iscz
1l - qe

(17)




where p(z) is given by equation 1 and
(=<}

E ElT|zlp(2)

E{T]

¥

i
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~
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o
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+
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Ui
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+
[
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o
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The characteristic function given by (17) is obtained by more general

‘{ methods inVChapter 3 of this part of the beport. The one-to-one
correspondence between probability demsity and characteristic
runctions facilitates 6btaining the unconditioned pdf of the random
variable T from (17}.

By the definition established in Chapter 1, Section 1.2, the
reciprozal of (18) is the attrition rate for impact-lethality
systems that employ the ?epeateﬁ single—shot;Markov'firing

doctrine. Special ceses of (18) include

(a) Egual Succeeding Round Firing Times (r, == = 7,)

fp ¢ (1 - u) + PK(u - P])"
o T TR PR N U e T g2 L (19)
L= £N) 3 L “ Fig K .
(b Independent Fire (P} = p = u = 6 T, s Tﬁ = 1)
LN N
E[T] = Ta + Tl - TS + ——EF-“*- . . (20)




(c) Independent Fire, Equal Firing Times

(Py =p=u=8;71) =T, =1 71)

T + 1

| - S £
E[T) = 1+ %5

(21)
K

These special cases reflect the fact that the attrition rate

for other impactwlethality, repeated single-shot systems are
given byrequatioh 18. For example, equation 20 may be used

to determine the attrition rate for guided-missile"Systémsf In
such systemébthehaécuracy capability of each round_in\a~séqﬁence
is essentjally the same but the timing for the first round is

different from zll succeeding onss.

2.2 ,ﬁuﬁat and Mixed-Madg'Fﬂring Dactrinevk~7"

Consider next, systems that emp;oykiﬁ§act-lethality
prqjectilesiand.ﬁéésess theicapaﬁi}ifyuof‘bﬂfst;firé.
Systems ofjthi$ type include tﬁe:vghiclé.rA§id~firé we&ﬁon

v system>(VR£WS); and sgcond&?y’armémenf.cn a ténk.;:fﬁése |
systems gan4empiay a number of'féaéonaple fire dbéffinéé
et 1 - oo §

 (a) repeated'ﬁingle-shot iﬁ&ependent firé;

(b) repeated single«shot Mackov fire,

-
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(¢) burst fire, and

(d) single-shot Markov fire until the first hit is
obtained and then immediately switch to burst

fire.
Doctrines (a) and (b) are single-shot fire doctrines, and
accordingly, the attrition rate for these systems is obtained
from equation 18 and special cases of it. The attrition rate
for doctrine (d) is obtained by considering the single-shot
and burst portions as two separate processes:
(1) single shot until the first hit is obtained. and

{2) burst fire until an additional (z - 1) hits are obtainea

to defeat the target.
Let

the number of roun’s fired to get the first hit,

=3
1}

3
]

the number of rounds fired to get (z - 1) additional
hits

be two random variables with expected values E(n,|z) and
E(n,|2) and density functions fl(nliz) and f,(n,]z), respec-
*ively. The distribution f(ny|z) is a special case of
equetion 7 (page 100), in which z = 1. Accordingly,E(nltz) is

giver. by equation 10 with z = 1,

E(nyz) = 1 + (22)

i i it i L L2




Ty

109

where

v = conditional probability of a hit following a

miss but preceding the first hit

replaces the symbol p. Additionally, it is recognized that

the distribution for the burst-fire phasc, f2(n|z) is, except

for a slight shifting of the axis, equivalent to equation 7

with the initial state probability Pl = 1.0. The shifting of

the distribution is due to the fact that the gunner, not waiting

to observe the result of each round before firing the next one,
th

will fire a small number of r-unds while the = and last re-

quired hit is in flight to the carget. Thus, from equation 10

E(nyjz) = z + (z - 1)%} =Py o, (23)

where

re-hitting probability (assumes the hit

o
n

probability of each round in a burst is
the same whether it follows a hit or a miss),

¢ = number of rounds fired while the round
which is to become the zth hit is in flight,
j l

[Tf/rb

-

}[x] is read as the maximum integer in x. The symbol 1, is
is defined on page 1lll.




The total number of rounds fired to defeat the target is

- 1: (24)

where the minus one ac~ounts for the fact that the first hit
was counted in both processes. Since the expected value is

a linear operator

E(n|z) = E(ny[2) + E(n,{z) - 1
(1 - p,)
=z + Vl+(z'l);l‘tﬂ+c.
(25)
Define
T, = time required to obtain the first hit,
T, = time required to obtain (z - 1) additional
hits,

T + time vequired to defeat the target (obtain
a total of z hits).

Analogous to the development of equation 1l,

Tl =T, + ('rl + Tf) + (Tm + Tf) (nl - 1) (28)
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Tt Tf + (z - 2)1b + [(n2 -c) - z]rb for z > 1
0 for z = 1

- ; (27
Th torg t (n2 - C - 2)rb for z > 1,

where
Ty, = time to fire the first round in the burst
- process after obtaining the first hit in
the single-shot process,
T, = average time between rounds during the burst

firing mode. The averaging is performed over
the time between individual rounds withia a
burst and the required cooling time between
bursts. "

Equation 27 is obtained by the following rationale. The

gunner senses the hit and fires the first burste-mode round

in ™ geconds. That round arrives at the target 1 seconds
later. All subsequent rounds arrive in a string at the target
in intervals of T, seconds. Excluding the c rounds fired after

th hit (since these additional

the round which results in the z
rounds do not affect the time to achieve z hits or the time to

defeat the target), rounds are fired after (z - 2) hits after




-
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the first and [(ﬁz - ¢) - z)} misses. Thus, the associated

expected values are

E(T J2) = 1, + 1) - 1+ (1 + 1.)E(n)|2) (28)
and
0 for z = 1
E(TQIZ) =
T + Te - (c + 2)Tb + T E(nzfz) for z > 1.
(203

Noting that the overlap of one round between the two firing

processes does nc”. exist in the firing times

T=1T, *+T (30)

and
E(T|2z) = E(T;|2) + £(T,|2)
) {ca + cuE(nllz) z =1
cg * cuE(nyjz} + g + T E(n,|2) z > 1,
(31>
“here

(]
o
"
—
o
+
—
b.,
¢
”~~
0
-+
8D
~r
-4
o
.
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Removing the conditioning on the lethality variable z by

E(T) = :E: E(T|2)p(2) (32)
zz1
and employing (22) and (23)
1 - P
EIT] = 1, + 1y + 1p + (1 + 1)
(33)

T
b
+ (1 - PK)[rh et l—ﬁ,-l-(— (1 - pPK)]

The reciprocal of equation 33 is the attrition rate for a
weapon system that employs mixed single-shot and burs:-

fire doctrines, and impact-lethality projectiles.

Doctrine (c), the pure burst firing mode, may be viewed

as a special case of the mixed firing doctrine in which

(a) the time to fire every round except the

first is Ty

(b) tne probability v = p = re-hitting probability,

and

(c) only the flight time of one round need be
considered.

These differences reduce equation 33 to

- PK(P1 - p)
E{T] = Tttt Te e Tyt Ty ppx .

(34)

113
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If all rounds in the burst, including the first, are indepen-

dently fired, (P, = p), equation 34 reduces to

1= + + + L Pk . | (3%5)
E[(T] = L.t Tg Ty -5pz—~
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Appendix B, 2, 1
NUMBER OF WAYS THAT K GROUPS COF HITS CAN SUM TO Z

Seth Bonder

We seek to prove that the number of ways that k groups
of hits can sum to z is (i:;{) . Let the k groups of hits be
represented by k + 1 bars. Consider initially, the problem
of dropping z hits into the k groups as shown below with an x

representing a hit.

Jex| x| Dbeex] ) (xxE
growp 1 T34 k=1 k

The first and iast pars are fixed. Therefore, this problem is

O

ne of Jerevwining the mumber of ways that, from z + k - 1 items

(hits and bars}, vou can drew z hits. Equivalently, the number

N

of ways that z hits can be arranged in z + k - 1 items, where

~z and kK ~ 1 of these ave different, is

[zex-1) | [e+k-1) i
z k-—l . AN

This problem permits groups to be empty. For situations with at
least one hit in each group start by dropping one hit in each,
i.e., subtract k from z in (13. This produces the desirel result

that the numbter of ways that k groupt of hits can sum to =

. z-1
s (2)
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TAEACTTRTOTIY TURCTION POR f(N]z)
Seth Ronder

B definition, the characteristic function

}

. o isN -
¢N|zl5) = L [e ] - t
}g 35N £in)ay (1) ,
2 i

where s is a dummy variable and i = "- . Substituting f{N|2z)

from the main text into equation (1),

dyjpfs) = A+ B | (2)

N-z-1
2 Z 1sN( ) k(l_u)k-lpk-l(k-z)qN-z-k-bl}

Nzz+1 s

(3)

N-z-1
2 E 1sn(z1\ D )klpk(k-l) R

(4)

and

N=z¢l k=1
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.
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szt+]

N-2z-1

-1 ' = isN li-22+1
,L )(1__u)z 1,2-1 Z: e ( - > q } (5)
-1 N=z+1

By letting v =

equation $ may

(2]
"

or

: +
(k-?). we note that tte sum in the V~©

be written

o
. Nez=1
Z eisN ( ) ‘qN-z-y-l

N=z+l y

hd . N-z-1
Z eisN ( ) qN-z-y-l
N=z¢14y y

term aof

(&)
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Sane( )= 0 whenever b > a. Expanding (6) and recalling that
b

3

(a+b) ath )
\ a ) b) ’
s s r /wat \ \ v 7
S. = elS(z+1+y) +(J'-‘- is {y+2 is
k M 1 Jae *\ 2 Jlae teoeveas (T

Since

iSl -

= Jql [e*®]

! |qe = g < 1,

the series in the bracket of equation 7 is a binomial series

of the form (1-x)"". Accordingly, equation 7 may be written

eis(_z+1+y)

3 hl
(1-qels)y+‘

eis(z+k-l) (8)

Substituting equation 8 into equation 5, term by term,

A = »Pl exaz uz--l




w— M S

P :
| el o) {7 i -
“\ ) u’ Civudp e 77 ll(i"q?ls) :

-1' . ‘
+( ) 1‘]z (1- u)2p2el (z 2)( -q s)-2

[ z=1
+(\ ) (l_u)z-l z-1,1s(22-1) ; -qe eisy=(z-1)
z-1

, (9
y=0 \ y l-ge )
and
is z-1 |
Az eiszPl ru + L1-ulpe (10)

since the sum in equation 9 is a binuﬁial expansion.

.By a derivation analogous to equations$ throﬁgh 10,

it can be shown that

‘is(zﬁl)qlp - (1-u) pei' ]z-l .

‘1.- q.i‘) A 1 - q'l
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5
4L s

Substituting equation LU and equation 1l into equation

the characteristic function

is .
i Q,pe is z=-1
oy ey = e lp, 4 A y o+ (l-u)EeS )
Z A1 l“'qels 1-qel
(123
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Chapter
IMPACT-LETHALITY SYSTEMS, rEPEATED SINGLI=-SHOT FIRE
DUOCTRIN®, TRANSFORM APPROACH

Stephen Kimbleton

The previous chapter presented methods of develcping
attrition-rate nrediction models for impact-lethality systems.
In this chapter we present an alternate approach to developing
the time-to~kill probability distribution fer systems of this
type. This method, based on the use of Laplace transform
techniques, provides another viewpoint of the process and can
be readily employed to model systems in which the probabilistic
character of the process timing (acquisition. firing, ete.)
is significant.

Consider the Markov firing doctrine described in Section
2.1, Although the individual sequence of hits and misses forms

a Markov chain, there is a related sequence of independent,

.identically distributed random vartibles which is more useful

in the present development. For an irreducible, positive,
recurrent Markov chain, the number of transitions 51,82;...
between entries into a given grate forms a sequence of inde-

pendent random variables and, after the first entriance, the

random variables are also icentically distributed (Parzen,

1962, p.266). Employing the same notation used in Chaptef 2,

’-we‘obsnrve that




g

and {for r 2 cy
-9
P(S; = £} = (L - P))1 -~ )7 5

1

Similarly, for j > 2,

and for r > 2,
PIS; = 7) = (1 - wil - %

Using these observations and proceeding via straightforward

calculations, it is easy to show that

l-Pl
5[51] 1+ P ’
(1)
E[S,] = 1 + 2=4 |
3 P
VAR(S,) = P. + (1 - P)2p~2 + p~1 « 1) - E5.%)
1° 1 1 P P | 1 »
' (2)

VARES;) = u ¢+ (1 - wizpT? ¢ 7l 4 1) - ELs, Y

for § > 2,
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Aarnd

2,p e
M. (6) = P_e e+ e S
S] 1 1 -« 9-9
e bl - we
Mg (8) = ue ~ + oy )
j 1 - ce

where Ql z 1 - Pl, g =1-p, and MX(B) is the Laplace-Ctieitjes
transfcrm of the random variable X evaluated at 6. Using the
preceding vresults, the central limit theory of renewal theory
may be used to de:ermine the number of rounds that must be
fired to obtain j hits for j reasonably large. For i small, the
exact distribution of the number of rounds may be obtained by
hrute force calculation, while bounds on this distribution may
be obtained through the use of Tchebycheff's inequality.

If N denotes the round on which the kill was obtained
and z denoted the number of the hit on which the kill was

obtained, it is seen that

. def &
N = S1 ¢ ... ¢S5 = :z:s .
z § 3




[
N

The ranc.n vdrgables ooand Sj-may l.e assumed independent

ter P v i, it toliows from a well-known -~ heorem on random

suins wi random variables that (Feller, 1968, p. 287)

My (8) = Mg (836 (M (8)) , (4)

1
where Gz_l(y) is the probability generating function of the
réndom variable z - 1 with durmy variable y, and S is a random
variable having the distribution of the random variables Sj
for 3 > 2. Since the conditional kill probability, Py» is
constant for the specific case under consideration, z - 1 is

geometricaily distributed over the integers > 0 and

Py

G,o1Y) = T TF T

Jbserve that until this pcint in the argument the explicit
form of z - 1 has not been used, and, indced, (%) is valid as long
 as 2 - 1'is a non-negative integer-valued random variable.

~

~ Substituting in (W),

Pxﬂsl(ﬁ)

’

| HN(O) H I—:—th:-pijugrty y ‘ .S)-




A5 bar.mang £
!
-3
P.v.e L A SRV L S S :
M (8) = al RS U .
' L-lg+ute - Foda™ v pug -

Henre,

P~ ¥
EIN] = El5{] + (—?7——ﬁ) Ll L

VARIN]

]
t
-~
[47]
[
Noro
| W—
+
A
—
o
"y
lL
e
4}
—
[£9)

. - 2
1 -2\ .
s (__y__ﬁ) E4(s) - E4N

Since B[Sll, E(S], E[Slzl, ECS?] nave or Cdin Fe exXpress
terins of PK, Pl,.u, Ps it follows that E[N] and VAR[N] may 1o

80 exprezsed by direct substitution.

L*Mﬂﬁhwm i c i - o o . PO e b e a e e i
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1u'guneral. it is ditticult to obtain the underlying
probability distribution given its probability generating

tunction. However, (6) is of the form

e
A, + B e"e + C,e”
2 2 2

-26

B Cle

20 ?

and since this is the Laplace-Stieltjes transform of a posi-
tive integer-valued random variable, it follows that this

expression also has the form
o

2 : pne-ne ]

n=1l
where p_ = PIN = n]l. That is,

-8 -28 _ -6 ~20 -nb

Upon equating coefficients, and observing that A, = 1, one

obtains

o

[
"
[+ ]

[

c, - B,B

1

©
~
»

2
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and for n > 3, p_ satisfies the difference equation

P, * Bypy g * Coppp = 0

By a well-known theorem on homogeneous second-order difference
equations (Goldberg, 1958, p. 1u41), it follows that if kl s A
are real roots of the quadratic equation Az t B,A ¢ C2 = 0,

then
Pp *© elﬂi ¥ 82”5 ?

where 8., and B, are u~ni :ly determined by the requircment
1 2 4

that they satisfy

Py = Bpdy * Bohg s

If, however, \,, A2 are conjugate complex roots, then

-
ES

P, *© yrcos(né + B) ,
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where Al and A, have the form r(cos® + i siné) and v, B
are, for Y>>0 and 0 < B < 27, uniquely determined by the

!

require. .":

Py = Yr cos(6 + 8) ,

er cos(26 + 8),

o
»n
1

Finally, if A, = A, = A, then

() + ByadA”

o
-t
"

where Bl, 62 are again determined from Pys Py Innpection

of (6) reveals that all of the preceding cases are possible.
It is relatively easy %2 solve the above d.ifterence cquations
through the use of standard computational mechods.

Consider next the times given in Chapter 2 as

-
11}

time to acquire target,

time to fire first round,

-
11}

time to fire a round given the prooedxng round
was a3 hit,

m = time to fire a round zivon the praceding round
was a miss,

Tt gPO]!ctilQ flight time.
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We shall first assume the t's are constants and then give
a brief discussion of the modifications necessary if they are :
instead assumed to be random variables. For deterministic
T's, it is convenient to assume that each T is a mulitiple of
some fixed constant, e.g., a second or millisecond. In practice,
of course, this conditiorn is always trivially satisfied.
By virtue of the preceding assumptions, if Xl is the
random variable giving the time to the first hit and for

iz 2, Xi denotes the time between the (3 1)5% and the jth

hit, then the sequence of random variables {Xj; i > 1 is
independent and the random variables {Xj; j > 2} are identically
distributed. It is also apparent that X, assumes only values

of the form s + T + (r - 1) T + rie for r > 1, while xj 3

assumes only values of the form Tt (r - l)rm *rie for j > 7,

r > 1. Indeed, we see that for r > 1

r‘]’

]
"

P[xl T, t Tyt (; - Dty + rrfJ = P[S1

a

?[xj T ¢ {r - 1)1m + rrfJ z P(sj = rl] .

: However, this implies that the'LApiace-Stielﬁjes transform

of Xi and xj @re~¢iv§n by'
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M

x (8) = exp{-(1, + 1, - Im)G}MSl((tm + 12)0) ,

1
(9)

M, (8) - exp{-(th - Tm)e}MS-((tm + rf)e) .

X
3 J
If T denotes the time at which the target is destroyed

¢ killed, then it follows that -

Employing similar arguments to those used in developing the

transform MN(G), we have

Pyt )

Mp(0) = T T PONTET a0

where X is a random variable having the distribution of the
random variables xj for j > 2. Using (3), gn@ (9), NT(O) may
be expressed in terms of the basic paranmeters P,, u. p, ¢nd
PK,resultihg in AnfgxppessiOn eQuiValdnt to iquati¢n;17 of
Chapter 2. Either-by differ§ntiuting the}dpﬁpopricte‘Laﬁldcé
tfénsform or by observing that'xs is a.linQirbtrdnafégnation

of 85 for j > 1, it can be shcwn that
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E[Xl] =T Tyt (E(Sl] - D ¢+ E[Slltf R
(11)
ELX] = Tt (ELS] - Dt + E[S]Tf s
1l - PK
E[LT] = E(Xl] + T E[X] , (12)
K
2 Hh . p\ .
VARLTS = E[X “1+ \-—F—-‘i) ELX%]
K
l - PK
+ 2 —TK-- B[Xl]E[X] (13)

1-P¥ 2
+ 2 (%) £%xa - Efma
K -

The reciproeéi of (12) is the attrition rate for impact-
lethality systems shich employ the single-shot, Markov firing
doctrine. This result was obtained in Chapter 2; however,

. the methods.described in this chapter have a generality th;t
»ean more readily be employed to mcdel other weapon systems.
'Scme‘poasibie cxtcngions and beneiits of this approach’are listed.

" below:

| ‘1. 1In obtainiag tha»trinsform Mp(0), it was implicitly assumed
~ that the distribution of z, the number of hits required to

obtain a kill, is geometric. However, as long as z is a positive
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integer valued random variable the analogue of (4) will hold,

i.e.,

i = My (03, 5 (My(0)) .

2. 1In the preceding discussion, the t's have been assumed

F to be constants. However, if the t's are assumed to be non-

{ negative independent random variables, the associated random
variables X. will be independent for j > 1 and identically -~

distributed for j > 2. It follows that in this case also,

.

expressions for the Laplace-Stieltjes transform of the time
to kill may be obtained. Further, using recently developed -

techniques for inversion of Laplace transforms (Dubner and

! ) " Abate, 1968), the exact probability distribution corresponding i{

to (6) or (10) may be obtained. | ’ L F
e o m j

3, Throughout our discussicn we have assumed that a target , e §

‘which is being fired upon is, ax the end of any given rcund,
either unimpaired or destroyed. Although this is a reasonable - ]

% | -assumpticn for some categories of weapons and tsrgets, in many

G i

" cases of interest thers will be a number of the intermediate

states of destruction of the target. At the cost of more

"involved computations, it is possible to extend the preceding -

T O
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analysis to cover these cases. Thus, assume the various

states of the target are labeled from G to N, n*:sia 3 cor-
responding to an unimpaired target and state N corresponding
to a totally destroved target.

In general, a targei need not pass through all the
intermediate states before being destroyed. Indeed, given
a target is in state i, there may well be another state j
corresponding to a greater degree of destruction of the target,
and yet state j may be effectively unreacnable from state i.
To see this, consider the following simplified version of some
results discussed by Goulet (1963). An enemy tank is assumed
to be in one of four states: undamaged, mobility destroyed,
firepower destréyed, or completely destroyed. (We assume that
complete destruction corresponds to the lestruction of both

firepower. and nobilitj ) lecling these states from 0 to 3,

’ freapectiv.ly. it follows that if we are 1n ‘state 1, state 2
}may not be. reschod.A Indeed, if we are in state 1 and the

' firepower eapability is destroyed, it follows from our hypoth—

eses that the state of the tank is 3., It is also of *nterest ,

1o rote that even though a tank in state 2 would uaually be
regarded as \aving luffcred more destruction than a fank in

.ctatc 1, ncverthclcss. atate 2 ccnnot be vcached from state lQ‘

i

e DL

L
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Assume that a tank is currently in state i and the next
succeeding state of the tank is j. Ther by applying thev
methods described in this chapter, the Laplace-Stieltjes
transform of the time or number of rounds to go from i to j
may be obtained. Let the sequence o. successive states of
destruction of a tank be 0 » il - i2 * ... ik + N. Then
the transform of the time or number of rounds needed to go

from state i. to .., can be obtained for 0 < j < k - 1, and

+1
the product if theJtranaforms then gives the transform of the
tim2 or number of rounds needed to go from state 0 to N along
this particular path. The sum of these tﬁanaforms over all
possible paths weightcd hy the probability of each path then
»vg;vos the (uneonditioaad) teanatorn of the time or number of
: rounds needcd to go fran st&te ¢ to state N.  The number of

rRsummands would appoar to be very large if the nuaber of intor-

- mediate states af dcatruction is larte. Houever, in prectice, :

‘the states are ucually labclcd sc that if we are currently

' ._in state i, then only statoa jwith 3 2 4 may be reachead.  Thus,

the ul*imate comput;tional ftnsibility 0f thic nathod depcndc
on both the magnitudo of N lnd tht nnnbcr of pocniblc paths ]
}_from 0 to N.

‘:u. The approach used in thil ehnpter conccptually voduco: the .

 } d;fficulty of tcsting thc nttrition—rato nodelt nspinst

RPN

pree—

s gt
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experimental firing data. The initial problem of drawing
inferences on the parameters of a Markov chain (a dJdifficult
task) has been replaced by the significantly simpler problem
of drawing inferences as to the independence and identical

distribution of sequences of random variables.

3.1 References
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Chapter Uu

SEMI-MARKOV ..NALYSIS

Robert Farrell

In Chepters 2 and 3, Wwe described two methods of obtaining
time-~to-kill probability distributions for impact-letnality,
repeated singles-shot weapons. The attrition rates of these
weapuns are obt: ined as the reciprocal of the mean time t¢ kiil.
This ckhapter treatsba general method <t dwveloping such attri-
tion rates without analyzipg the complete distribution of the
time to kill, The approach taken in this development is
based on the theory of sena-Markov or Markov-renewal prccesses,

and is a generaliz.tion of the methods in Barfoot (1364).

Basically, we analyze th: process in which a weapon fires
at a target until he dec;dse to cease fire on it, fires at
a second target unxii;he decides to cease fire on it, etc.
This process”ié analyzed Ly subdividing the péri)d of fire on
a singié'target into intgrvals corraspondihs«to differences

in thé behavior_or_ét&te of the tiring waapon systcm. »

Th.s technzque may be used to detevmine the expected

time to kill in any. firing proeeas with a set of distinguzshable
istates Sl,....S" (o.g., first round fired, round fireu aftar a

‘preceding hit. etc. ) as long as’ .

(a) the process makes trunsitians at distinct points

in time (shell arrivnls»in the cxa-plc);

it i S i




(b) the prokability of transitior to Sj’ glven one iz in

B3 is pij which does not depend on kncwledge of
any hictory of the process;

{c) given an entry into S; and the next transjition
from S; to Sj’ the length of time in the in.~rval
from entry tc exit is a random vevriable distributed
as fij’ which may depend on the states S; aad Sj but i
is not inflvencrd by further knowledge - the proce«s
history. This random time interval has a “inite
Mnean, migs

(d) the process starts in S, (finished with lest engagement,
starting new one) and terminates with an entry tc
Sl; ard

(e) every state has 2ome probabilitv of eventually cccur-
ring.

- In essence, the techn®jue is applicable fcr any continued

s s s

firihg;proegss which may be modeled as a semi-Markcw process.

Wé first define

e diiimdiihidle & i A ki

and £y, the Markcv-chain steady-state frequencies.1 as the soluzirn

i i K

of '

- N

S v £.p. R |

. £ =-§ FiPai zfi‘ '
321 izl -

i bye e

lTh. meaning aml propertiec of the steady-atate {requercies acr~
discussed in any book va s“cchastic processes or Markev chain..
See, for instance, Parzen (1962), Kemeny and Spell (1362),
or Karlin (1966}, ,

el . b o N e emat s ale ko AR Ll L0 Lt e’ b ot e e e it UINSAN s e LN e




Then ‘rom an 2lementary theorem of Markov renewal theory,

3=1

wa whow that

Ag an eiample of the use of this method, let tvs consider
¢ genaralized version of the "Markov fire" case treated in
Chapter 2,  Let

S, + st2te preceding first round at new target after
termination of an engagement,

3, = state after a hit (which did not kill) on current

target,

S, = state after a miss (which did not kill) on current

target,

Tegp Vgl N e

u - probability of a hit after a preceding hit,.

o
"

proktability of a hit after a pfeceding'hiss;,;

orobability of a hit on the first round, ;j?;wj-\

B
1}

Hy, = probalility that a hit after a hit kills,thé;;afgéﬁ,f :(";??“
H, = probabiiity that a hit after a miss kills ihe,tatéét;vt;\;
E, * probability that a hit on first round kills fhe.t&rgef;,’

M. = probability that a miss after a hit kills the target;;-v\,

.
-
i

probability thaffaumiss;after»a~miss7kills the?t;rgat,'
M, = probability that a miss on the first round kills the ‘
target. o

Then we have

:This is theorem 5.16 in Ross (1970) and theorem 5§.12 in Cinlar ﬂ
(1969), . 3
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Py = Py *+ (1 - PpIMy,
Py = P (1 - H,
Pyg = (1= P)(L - M),

Pyy = u(l = Hyls
Pyy = (1 - uw(Q1 - MH)s
Pyy = PHy + (1 - piMy,
Py, © p(l1 - HM)’
Pyg = (1 - pX(1 - My).

N
We will assume the distributions Fij or the composite ;E: pijFij
_— j=1
are available, and taat the mi have been determined.l Now,
solving the steady-state equation gives2

-1

[
"

1 (1 + a, + a3)

h
[1]

2 az/(l + a, + aa)

£, ¢ a3/(1 ta,t as)
where
‘ 8y = (Pgpll = ppy) * PyaPy )/ (Py1Pyy * (1 = PpplPyy)
a, =

((1 = )1 - pygy) = PygPyy M/ ((1 = PyydPyy * PpyP3p) -

And finally ,

E(T) = ml + am, + aama . | (1)

1Any data which determine the n; are-adequate; no particular
forms are required.

2

There cre many alternative forms for this solution. This may
not be the most appropriete for computatioral purposes.
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It may be noted that alfhough independent data entries
(u’p’Pl’HH’HM’HI’MH’MM’Ml’ml’mZ’m3> atelrequired to describe the
entire process, only 5 dimensions of freedom exist in the E(T)

expression (a2,a3,m1,m2,m3). Further, a, and a, may be determined

from 6, not 9, expreésions (pll’p12‘pzl’p22’931’932)‘ Thus ,

a data-generation and data-handling savings may result if some

of these compressed forms could be obtained to replace the

12 (or more,) 1f the F, i3 °or m13 are considered original dimensions.
It is clear that (1) could be rewritten to give an ex-

pression féf E(T) in terms of the fundanmental process parameters

by using the expressions for mys Moy and My The present form

is slightly more convenient for computational purposes, how-

ever.

4.1 Referencce
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Cinlar, E., "Markov Renewal ' +" Advances in Applicd Prob-
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Karlin, S., 4 Firet Course in Stookcctia Procccocc, Neu York‘
Academic Press, 1966. .

Kemeny, J.5., and Snell, J, L.. Finite Markov c&«iac. Princeton._’
. 'N.J.: D. Van Nostrand Conpany. Ine.,. 1900.  -
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Chapter 5
AREA-LETHALITY SYSTEMS

Robart Gruhl and Robert Farrell

- This chapter presents the development of a model to
predict the i%tbiﬁion@?ate for one or more weapons classified
as dmeablathality systems. Systems of this type usually
_five intn-aa apea without xnowledge of exact target loca-.

tinna and éestney ‘tangets via fragmentation or some other

’~iget~%gthaizty neﬁﬁnnlam. A field artillery battery is an

eaanple of this type of system and the. .problem is to. determine
the timn nate of dsstrgyzng an area target by the simultaneous

~¥§nﬁ sequanxinﬂ delivgry of mult:ple‘aeapons in the battery.

mhoAaxﬁri&tan-n;xe modnl~deunlopad in th;s chapter

‘iiplays~aog&itl ofﬁthﬂlanxti#olley t;rget_coveragg analysis

conducted by Hess (1868). Integral to his analysis (and thus,
thc-faajnla:adqvcloped herein) are some specific "target

~coverage functions" and "damage functions"; however, the
‘tppaégthg;gd to develop the attrition-rate model can readily
~'q¢huiﬁar'oth§r»cova#age‘and damage functions.

Bnclnac of the raliance on target coverage methodology

_»and tha nco of Hess '8 spccific assumptions and results, these
briofly revicwed in Section 5.1. _The attrxtion-rate‘model
'-"is dcv:lopad in Scotion a.z. The effect of changing target

R it e M - et {3 e e s
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posture during a firing ihtewcl is considered in Sectien 5:3.
Section 5.4 contains a discussion of modifisations to account
for possible nonhomogeneous damage levels uithia the tager - (,

area. I
: i

5.1 Multioottoy rargct Coverage . S i,
- 1.,

Th: target coverage prodblem COnQesnF "u!uoda for de-
termining the daugc to targets mﬂ.iiet.& hg ‘ﬁu m vcey ﬂi '
one or more, indirect-fire weapoms. Usuﬂw the covetege @000
prohiem ie ueed to denote the chssslat MQ_.;! th_ _;:f__;;‘. e i | 4
multivolléy problem denotes #oTe HAR Sap aNOt. A voXlay (. '
1athenmberefrmdsﬁmdmunmdmtlm-s |
(four to eight in firing utm}. - ' j ,‘ _ ‘_'_ ’Biblioxmhy i

of eevmnmn. nm &umnma;

r
L
e e e o -
._m "i&;"‘-" o S ,‘j

Terragno (nmn. ‘ ‘ . o - - E!
The multivolley coverage analysis \w‘d tn ‘the dmloy- -y 1 _
ment ot‘ the attrition-utu ‘motel is am By Hess (1988). " f,
Except for the damage pattnm utmptica m‘. aodel for {, ;
the expected fraction of damige té thc Target is based’ on 'y R
minimum set of naml nnu-pﬁm ™e fonum .p.cifi& R g
auunpt:l.om um und for model Mﬂﬁﬁﬂh mnmtkm. - l j

and oonpuutioml purpanu o

E
4
Y
-4
'3
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Dalivery Biae ‘ '

Noc delivery bias exists--no aiming ervor, target
location error, or intentional offset.

Da»&»cyg Evror. :
Centers of impact (x,y) of the volley. damage patterns ] i
are distributed about a mean center of impact (X,¥)
“accerding to the c1rcu1ar normal distr;butlon For
convenience, we let (x,y) = (0,0), 6 = 1. The delivery
errur is thgn ‘

tn

1L

11
1

i
e CIPRIG oY oo et

hcfz.yz (m lexp[ ey )/21 Y

w mmmeime L P S RO R A . e e

TR

Sy
oA i s i

2

Fis
s |
N

e

Taggct ‘
- A ci!cle ﬁith nud;uﬁ Ry centered at the OFngn. Two,
) mafhanltixfl'y equavalent, targets are corsidered:
d T e A c ular homoganeoue—nmga target, centered
i (350) and redius R, and.

b. fA point target (Eyn) of uniformly uncertain
location in the area of radius Rt Tr.e target
dtnsity function ¥(§,n) *s then:

, whcn i} w(a.n)dﬁdn 21l .

5 O] BNV O SIS
paud

st |

Dunagc Alauuption -
The. dann;c pattern is a eireul&r cookie-cutterl of

| radius Rp.: Let gﬁ:.n;x,y) bc the damage function*

rme

'7'_7-It_3!! bsen shoun ’ '”ﬁ'é 1%5#) tbat a circvlar covcrase l :
G i fmiaa. xhieh is a iora realistic portrayal of

age yialds the same results as the cir-
f_;[pouttcr i* weapons are delivered with circular
s cxccpt row & idrger delivery variance found
P \ ) dumsge function, Hence, derived
better dnnn;e function than the

cmertin
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Xy €% - 572-+ (y -.~,n)2 <

d(g,nsx,y) = .t
" 0. othming ’ ;

where
d(E,n;3x,y) is the prob.bility that a poixt Wﬂk

(E,n) will be killed by a damage ’ntt&l with wﬂ‘ G«f o

impact at (x,y). Damage is eithes all ow-i

(xilled or not killed}-=nn cﬂh&iﬁpwﬁ L

We proceed by letting - -~ - L e

distance from {&iW)s a yﬂhf m a m :
ceriter of impact (,0,0) so shat ’ T -
}and _ p2egle ﬂ2 S ) R o
the prcoability that a point sarget t;*,n? h O .
by a damage pattern with conter of w tl (’%sy)
{this is also the Mlity ti!a‘- t !M aﬁ‘t‘.
of impact, subject to the ciFculig - | :
ticn, will fall wmuka 'Y ehch# m n; o
(E,n)].

r

P(Rp,r)

Then,
PCR,,r) = {f .i..ug-a’o y?)m@y- . -__.;«-'-n}‘_ ,
where C is the circh ‘
- n’ . (9 ﬁ*ﬁlﬁ
The .vent thlt tho 901!1‘ “.‘\1 l-l‘ ..._'._3._

_ Bernoulli randon variable. m- m 3

“~
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a2 tings iax wolisys is binomial
Y] {P(np,r)lktl » PER_,r) VR () -
This ia the point cqglnt_zgq.,_fimct‘igh. g
) Lcttin; :.:;
D3 ﬁcmﬁttmﬂmthm«l. o

« :ek %ﬁt madet Md uuetry
e TR 3 "“ﬂp | :

*'?’v

e '?’Qi%- Rt S n" . sy -
* e immma mm; mus? M 1oe-:f:ed :
ax (t.n) meuy % ‘thu u v von.qu and d&gin; it is.

R a . ck: = rmlok)ptcka

e gu;v,x’.uu - g - n"J . (&)

ol e,
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L 2 T3 awciramilen.
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P (D)= o PD ¢ Cyp) A £

. §g(k;v,kp’r)[i-- (1 - A)k} -.“ B (7) — ’ i

115ty that the point tavpet ts ot (X,n) h
P I | '
. S R TR :

then P_(W * D) -*an’ (D) and the mrgim prabtbilit:hl -
of damage (kil1) to a point tungct. 2o is o A*”ii

e Sf ]

target
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The target coverage funct'ionb is dsfincdas

1}

ol

i G(k;v,Rp,!t) =z ﬁ —-!- z(k.v,k ,r)d(dn . (10)
- target

GCk;3v,R ,R ) 1: _the expected fxaction of target area covered "F"
i P P i
tj euctly k times in v volleys or the probability that a point )
Y targct u mmﬁ enct}.y k times in v volleys by the damage » g"‘
“ plttarn. M; - o ‘ ‘
- ’ T . - - .. - B ~
.'f__l - e Kk _
; ,1 : 2, = I B = (1 - X)TI6Gv,RLR,) (11)
¥ 1
L
H ' 1: the eapocm fpiction of damage 0 an avea tu'get in v

volhyg or the panbab.ili*y that & point tu-get of unecrtnn
Ideatinn within the taz!gnt- aree is dunc.d (killed). Employing
tha speéific assumptions noted abdve, it can be shown that




A large number of integrations are involved in the T i?

D
~ X N

calculations of fv. tHegss developad an approximatidh, £, | |

to £, by replacing GYk;v,Rp,Rt) with

: k -
QUk;v,R ,R) = (;)_[SI(RP,Rt)} (- s RLRO1VR, an

where Sl(Rp’Rt) is the probability a target element is at ' é

(gyn) and covered by the damage pat*ern, or the expected
fraction of the target covered by the damage pattern in one

voZley.. The resuliing approximation is given by 5 §<

) v R . o
£, = 3, 0= Q- 0 M0, R o
k=0 . . - ‘

) : gd

[

=21~ [1 - xsl.l" , - as) s !

where S (R ,R ) is denoted by Sl. S A . f
The approx:mation f is subject to large error 1f R, or - %
Ry

are 1ot small relative to the.circular prcbahla crror.~CEP 5
(radius of a circle centered at the mean impact point contaxnxnb o

50 percent of the impact locations) A corroetion factor CF,
was devzaed by Hesa which corrects. for tho basi* assunptions

~above, the approximation f “to within 1 percent of f ~ The
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carrection factor is given by

-(v-2)8

CF, =1 - (v - 1llye (186)

The parameters y and § are charted by hess (1968, pp. 212-21).

Thus, the corrected approximate expected fraction o;'qamégg

is

a: R4
"

v fVCFV

N
o -1 - Aal) ]CFV . (17)

6.2 The Attriiion Rate

.gv ia debendzng on the number of volleys, v. Assuming
a constant firine rate, f, the corrected approxzinate c<xpecutad
fraction of area target killed as a function of time, cenoted

by ¢c(t) » is

o - ‘ fx '
¢°(t) = [1 - (1 - Asl) JCFft . (18)

If N is the number of indnpendent and identically

diqtributdd targets in the area at the b>ginning of ;he'time

it il TN ik ¢

A M Catides.d i L
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interval [0,t], the expected number’ at t is
ntt) = [1 - ¢c(t)]N .
The expected number at (t + 1) is then
Q(t 1) o= [l - 9 (t+ DN,

Then

n(t + 1) - n(t)
T

= 1im
1+0

a4

lim([l - ot + DIN - [1 - ¢c<t)m}

1+0
¢ (t + 1) - ¢ (%)
z 1lim - N =& = ¢
T+0
= -N¢é(t) . (18)

Comparing this expression with (1] of Chapter 2, Part A,
for a single Red group (J = 1) and only one firing Blue
unit (m = i) suggests that the attrition rate for indirect-

fire, area—lethalit§jsystems be taken as

Bz RlON . IERCIIN

IThis is based on the assumption that the probability mass

function of the number of survivors is binomial with parameter

L1 - e(t)].
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A useful simplification of (10) for numerical evaluation
of the general combat equations is obtained if we use the

uncorrected approximate expected fraction of area target killed

in (20). That is, substitute
¢(t) = 1 - (1 - ASl)ft (21)

for ¢.(t). Then
¢'(t) = -£(1 - A5 TInCL - sy . (22)

But (1 - XSl)ft is the fraction of area targe! not damaged,

and therefore,

fr _ n(t) ,
(1 - ASl) : T (23)

Substituting (23) into (22),

$'(t) = -f(-‘-‘é-t—’) © 1n(1 - 2s)) .

Then,
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dn . -N[2§£lf . 1n(1 - Aslﬂ

-n(t)f . In(l - xsl) .

But -f + 1n(l - AS,) = ¢'(0) when ¢(t) = [1 - (1 - Asp®%1 .
Therefore, the attrition of an area target due to-indirect fire

from one Blue firing unit is
% = -n(£)9'(0)

and

.,
N

N
%yncorvected © Q'(nia(tl . - (2%)
This simplified form of the ttfrition rate should be used
only when Hess's uncorroctiﬂ'apﬁro:innxien»

#e x3 - Q- Aslaf*

is appropriate and the intorprotntion of (23) can be 3ivcn to
)ft.-
continuoutly unifennly distributcd thqnaolvcs in tht ttruot
area and th:vc!ort that the probabllity cf n(t) survivors is

It ia dcpcndant on ‘the nsoulytian thct tho tcrccts
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binomial. In general, ¢(t) is a good approximation if Rp».Rt

or when Rt < o, Rp < ¢ (wvhere R is the radius of the lethal

p
effects circle, R, is the radius of the target and ¢ is the

standard deviation of the delivery error) or w'en the number of

- volleys, v = ft, i%s small, e.g.,

-fO z ¢(t) is a good approximation to fv for v < 10
when S1 = ,2183, A = .25, Rp = 1 CEP, Rt = 2 CEP

Rethrnin; fo the basic atirition rete fequatien 20),
e e g - a - - e - Dye D8 G
=.-£y."ft'2"§1 - stre - 1) - (1 - 8Tt

v (et - V11 - 131)44 1~ 8(et - 132}

1 - a8>%t 101 - a8.)
~£01 - 187" 101 - 28))

’~Vfﬁ*ﬂi?ﬂlltiﬁgi»:Ligﬁloying-(zzi<and'1qtting

Certe) v mtyem IR (e - 1) - (1 - asFT

'iyf:¥?j£§:iv4=1i$§$17—-xsi§j*fi7;'8tft'¥-x)l} »  (26)
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b
E oLLt) =l (t) + ¢' (L) . ) _ (28 . ’[ i

Thus, the attrition rate using the corrected approximate ~ i

expected fraction of damage to an area target is

d "y

a = ['(t) + ¢'(IIN . . (26)

o
-

a7y
[P

§.8 DifTevsnut Targei Postures : . e ek
The. bus,c model assumes that the ua;ot wmntw _ RN
does not change during a volley attack. Howevmr, in. ‘prectice; '
target elements (e.g.. personnel) umuy m’oul ‘to &a attaek
by changing location and/ov mm tﬂ m ” daecaans
vulnerability. In thds -»m n D 28 ¢
3 target posture (s.g:s Teom shining ‘ &
2 ‘ _foxhole) following Hess's m;m ﬂ ‘ﬁ# m Qﬁﬁt m &h :

i ) uncorrected attrit!.on rate;
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_Then the- uncorrected approximate probability of kill in v

A

-vollsys, f , to a point target of uncertain location within

the area (or the fraction of damage to an area target) is
(Mess, 1968, p. 94) - |
~ L : vi.
£,z 1 - I (1 -A.3,) (27)
v isl 71

' ‘ox' altemuatively

'vﬁv s 1-[1-awnsdY, o (28)

A(v) = the upﬂtﬁc -mma.m of kill givon
coverags in v wz.m:.

: "-" v, l‘.k o . ,, )
1 - (1 - kiﬁ i a €29)
1-1 :
- ut v e ft in \28) and (29) and v; = ft; in (28), where
hmdamzof time apmtupwtmimd

4 ;'?1 f t:._
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Thus,

o = (1= a-agrasptty oL T -

y

where a(t) = AC£t)S, apd Bt ¢ fr. Thus,

't

o) = @ - ol e e

’_"(‘) :- 1-,._-I :‘- > S i
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Let t; » a;t, whare 0 < &; < 1 is thc fracticn of the
E 7 ‘total ﬁﬁ'dg time. 'ﬂﬁ*targot‘ spsnds inm poature 1. Then,

2 agt/t : -
ALPE) B 1 - nu-xi) S .
. izl ) :

N 3 a
- =i~ H(1-a) tdef, (s1) -
o S e

PRI, P SRR VP INE . Y
[ 1E Y
s S |
L

Thee, §@(re3 2 0, and a'(t) = 0. Therefors, from (30)
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target area (i.e., a target sleagnt is pot m wuinereble i

in one pa,rt of the area thct thla Wl. & um mtm . r

we show how the model c«m be exteadsd to .'meludy ‘varying degrean ':

of vulnwabn.lty if. the area u-.!.th réapact u ,dan target typo‘ c
m basic assumptions for tuc utmton m Mhr to -

-"  _target and weapon combination aid is constant owsr a‘im L [‘; -3
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which leads directly to

P(D|C * Ap) = 1 - (1 - AKX

: ok

Since the prohahilify of C, is given by (4) ard

| PEAy) = PGA) = t2mRDYTY

T -

" thea

BD - Cy - M) = 33D gnvad il - (- apK)
PED - € + A = C2mDL g A Edy - & - 2%l

Letting B' be the demage in v volleys,
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(34)

(35)

(36)

(37)

(38)
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and

v

k=1

v
(ZWRi)'l E x:)‘[P(Rp,r‘) ]k

g
”~~
o)
>
»
-
n

k=1l

L1 - P(Rpgr')]'v-k (1-Q- Az)k]} .

Since the events A, and A, are mutually exclueive for a single

target in the total area A,

P(D, * A = (2md)d

‘2 —'S(Rﬁ,r>3“‘k"

g,’c.:a'g)." »_ 1 }_Q?v*_;::,!-(np*.r);)"-:; - P(np.r.?]"'." '
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v
P(D,) = : (ﬂRz)"l ) ‘g(k;v,R ')
v v . t l P

target k=1
. {1 - %[(l - Al)k + (1 - Az)k]}$d£dn
A
E _ Y 1, k k
ﬁ = ALJ?{[l - ?i(l - Al) + (1 - Az) J}
k=1
. 2,-1 .
/j (7Ry) g(k;v,P?,r)dﬁdnf.. (32)
target

The double integral in (39) is the target ccverag¢ function
G(k;v,Rp,Rt) given by (10) which, as an approximation, can be
replaced by Q(k;v,Rp,Rt) given by (lu4)., Analogous to the
previous development this leads tu the uncorrected approximate

expected fraction damage Ev « F, .

.4
s € N Kk v-Kk
k=1 .

v

v\ | PP v-k
2 .

¥

ol A o X, V=K
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Equation 40 can be used directly as ¢{t) to estimate the

attrition rate with the uncorrected appvoximateAexpected fraction

damage.
Bv induction, the analysis of this section can be extended
to m different damage levels associated with m egqual partitions

0f the target circle. This results in the approximation
m N
PR 1 v
£, 1 - ﬁ[z (1 - A8 } : (41)
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PART C
HOMCGENEOUS-FORCE DIFFERENTIAL MODELS
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The basic structure assumed to describe the combat ac-
tivity was given in Part A by the coupled sets of differen-

tial equations

dn.

i

-?Aij(r)‘i fot'j s 1,2.»00"1 ? [l]

dm; .
ar -?Bﬁi(t‘)nj for i ] 1,2,0-0’1 . [2]

The preceding part of the report described methods that have
been develaped to predict the principal input to these equa-
tions--the attrition rate. This and the next part of the

report present results of research that has been directed

to obtaining solutions for the above equations, where a
solution is taken to be the trajectory éf surviving forces
of each groupdiring the battle as a functian of basic inputs
and initial humbérs of forces.’ | o

Ideally, it would be desirable to have the solutions‘in
simple, closed form which would reﬁdiiybportréy the relation-
ihip bctwocnvthc ihdepcndent factovo‘of'th. combat process
and the surviving nuabers of forces. This would fncilitaté

1

"Logistics and locations of survivors can also be determined
as purt of the solution, but are omitted in this discussion.
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both sensitivity analysis and determination of those inde-

- pendent variables which significantly contribute to combat

‘effectiveness. Attempts to obtain such closed-f¢fm solutions

have focused on simplified cases of the combat equations
in order to obtain some insight into the solution proce-
dures and problems related thereto; _These aiaplifiod cases
include (a) homogeneous-force battles (ons.ineup on ﬁlchkside)
which are described in this part of the report, and (b)rconstant-
coefficient, heterogeneous-force battles which ars dnisgt&hd
in Part D. | o

Chapter 1 conaiders the clse'of eonstnnt ﬁftr?tian rates
for both the Red and Blue weapons. chtptor 2 presents the
solution to a special case of variable Qttrittaa rlt.s 1n which
their ratio ie a conitant. The effect of |s;aa1t a@gad uadnr
this cordition is examined in Chapter 3. .Chagtar u pr.tontt |
some approximation results fer gcnnrll vlmi;h;e attrition

rates in honogoneouc-forco battles. Anala; lclutiona for

\ lxnenr attrition-rnte function: are prcseated in Chapter s.

Analytic solutions for a bypothetieul fire-support :ituation

with variable attrition ratos.aro givon}in Ch;ptcr-ﬁf, '
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- s

LY
o ekienr

LR PN
B

ot # Y

e
D

B asi B e

il




Chapter 1
CONSTANT ATTRITION~RATE MODEL

Seth Bonder

In this chapter we consider the simplest homogeneous-
force battle model in which the attrition rates are constant

1 The constancy

and the intelligence coefficients are unity.
of the attrition rates inqicates thét they are neither functions
of battle time nor range between weapon and target groups.
Since there is only one group on each side, the allocation
f&etor ie also eguil to unity foi' each force. |
Thase assuaptions reduce “the hgtcroget;cous-force battle

squations to

’%i-an ' (3)
fg"-'ﬁn W)

if the Qmi;iioa» rates are also not functions of the nuaber

- of surviving targets and

R o Cw

inte: efficients.

'1;"11 lg.m ;nuaud :ln this npomt hn eomidered unity

s ey

Y

S G SPUS N
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when both sides employ—area-léthnlity weapons. The attrition
* pates in (5) and (b7, (a,n) and (B,m), reflect the dependency
of the uncorrected area-lethality attrition rlf"HGOMQIOPCG in

{B,5.0] ocn the number of surviving targets whspo. notationally,

ap and B, are given by ¢'(0) of that’ chaytcr.l

Equatjons 3 to 6 are the classical combat formulations
of F. W. lanchester (1816). Equations 3 and 4 comprise thc_
more famzllar "modern combat" &cscrlytion in uhieh it is
assumed that combat takes place at closa quartars sueh thnt
each unit may:take any enemy urit under fire lﬂd, having
killed that enemy unit, shiffs its fire to another enemy
unit. Combatants whose QEonn systems have. afxrition-rates

_classified as impact 1.thn1$ty (see ts, 2,01, and

cre oconatant throughaut the batttc, unnld bc oaaaietgnt

with this formulation, Th;s description aéiitignllly as~
isumes that units on either side are within weapon rangs of
‘all enemy units and that firc ia distributed unifornly ovcr: 1
remaxning units. |

“The eolution of oquationo 3 and M with tha till vurilble

Arcmovad--cllled thc statc lolution--in obtaincd by dividing
(3) by (u). intcgrating. and cnploying thn initill forcc
size conditiong that.}gt t s 0, n= N and;n s;H,..:hip_;‘ -

iThe attrition ratos for area lﬁthality syttin: are thc only

ones developed to date which are state dependent. Acc°rd;ns--»'

ly the battle desc*iition given by (8) ¢6) is the oRly
state-dependent attrition-rate case exanined in this rnport.

Other hypothesized state-dependent duacviptionn ara sum~
 marized by Dolansk9 (196“). _

vt wsnsban i1

» apain A

st ¥
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leads to the pesult that
a? - m?) 2 gn? - nh) (1)

which ie invariant throughout the battle. Thus, for any
apo:cifi'cd number of surviving Red unite, we can determine the
~ associated number of surviving Blue ynits. For. example, -
. if the Red force is annihilated (n = 0)sthen

2. aM? . gN? Y
which indicates that Blye will have sowe surviving units if
aM? > g% (9)

, lanqmlity (9 ilplhl th&‘t Blue will win the battle,
‘ if Msﬁq {8 tms tt be eambﬂcu‘an of the- oppociug -foroe.
The oonditien , ‘ : :

aﬂ‘ s - an

_5-!!911“ 'Y W (Rud aad B?mc forees cppmch zero simul-- |

tcmou:ly). umhutu' ocucd thiu condition an cqunl:.ty of

h md, lima it h yroportioml to thc

Héghting siven

E '_lquu'c of th: tem un, m bun gi.vcn tho fuiliu' mo S

v i g e i e s W g
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"Lanchester's squa;e 1aq,”l ‘This suggests that tﬁarq éxists'
a definite adv§§t$§e in concentrating forces. If the Blue
force has a weapon whose attrition rate is fcug‘tiias greater
than the Red force weapons, the Red force éiil-raguirc only
twice the initial number of forces o have equal pntehtill

v of annihilating the Blue force.

The time sOlution2 of this ;igplgfied description of
‘combat is‘well’knoun and readily obtained by quﬁ#tituting
(3) into the derivativé of (4) and solving the resulting
‘second-ordery constant coafficient, differential equation
under the initial conditions that n = Nand m = Mat t = 0

producing

nzN cosg (/abt) - va78 M sinh (vaidt) )
ang

m = M cosh §¢Eit) -»drﬁ?‘ﬂ'aiﬁh (/ape) . 1(12)

It is also a straightforward'taskito_dotorninn tho ti@e

. 1Weiss (1962) notes that Lanchester's square law uas apparently
anticipated by Rear Admiral Bradley A. Fiske as early as
1905. Fiske stated that (Robison., 1942): "The decrezse in

 offensive power of a weaker fleet fighting a stronger is
geometrical, instead ot arithmetical, and that there is a
continually increasing difference between the powers of two
fleets as an action progressss which favors the stronger ’
fleet."” This is the effect of concentration described by

Lanchester's equations. Although Fiske qualitatively described

this phenomena, Lanchester was the first to formalize it
in quantitative terms. . = - R S
Zyumber of surviving Red and Blue units as a function of

battle time. 3 - N

P 4
1
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o

(‘tg) required for the i‘"

side to be completely annihilated
as the min {ig,t’;}% , where |

n_ 1 -1 (N oy

T % -== tanh /B?a) (13)
° BE (ﬂ

m 1 -1 M

7. = == tanh " | § vYa/B ) . (14)
° /a8 (N

%masg are derived from equations 11 and 12 by setting the left-
hand gide eqqal to zero and solving for the appropriatg
time.

Equations 5 and 6 contain state-dependent attrition
rates derived in [B, 5.0] for weapon systems that use area-
1cha1ity gcch;aisms, The implied assumptions are (a) the
tﬂ:gyfurqvg ﬁai!oénly randomly distributed after each volley
'of‘fiin; tﬁ)rnach unit knows the general area in which
enemy unita are located but not the consequences of its own
firve, and (c) fire from the surviving forces is distributed
uniforaly over thc}iroa in which the enemy forces are lo-
cated. In fhi literature equations 6 and 6 are known as
'Lanehqntcr's-linan 1aw’formu1ationQ

The state solution_is obtained by dividing (8) by (6),

intigrnting; and employing the initial conditions that at
t =0, n'!Nand me M '

EALE h)‘*}BA(H-—:h)., L (15)




which is invariant throughout the battle.

If the Red force

is annihilated, the associzted rumber of Blue survivors

is
o= aAM - sAN s (16)
which is pesitive if
A > BA . {17
Thus the cdndition
agM = BN (18)

implies that both forces will;évproach zeré simnlféﬁeously
if the battle is;deécribed wy equatione S?Qnd 8.17$his |
formulation suggestskth&t-érforce*s fighting étrength is
proportional to the‘fercﬁ_size, giving’riagnto thélname
"Lanchester's linear law." \

The so,ﬁtibn for the'number of survivihg forces as a

- function of tlme is obta‘ned by solvicg (15) for aAm and

substltutxng ‘this quantlky 1nto (“ producxng

an . oy 2y \
where K =z (a M = aﬁsﬁ‘ Integrating (19),
(20)

-log

1 * §fﬁliz>K(“t'* C),
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where C is an arbitrary constant evaluted by the initial con-
dition that n = N at t = 0.

If (1 + 355) > 0, from £20)
A

oLy s X \
C = X logl + EXN] (21:

If (1 + 355) <o,

>

i Lo

C=-3l0gl-1 + EEN’] . | (22) -
A

Substit ting either (21) or (22) invo (20).

LA ey gt oy gumg Gwwd Gud WD S O3B

T T T T ST e T e £ . PN T i
AR L LR LR T R R 10
k4 - A

aﬁd‘

n

e o ) h&n’f&mﬁ

. where ¢ = QAHfBAH. Substituting (23) into the state solution

: % ; {15) and solving,
|-
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_ M(¢ - 1)
m = -B,N(-1IT . (24>
$ - e

The parameter ¢ is associated with the state solution and
exprasses the initial advantage of the Blue force over the
Red force. This is shown by the ratio

-R, N(p-1)t
e A (25)

B
==z

whiclh irdicates that the Blue force will annihilate the Red

force when ¢ >1 and will be annihilated when ¢ < 1.
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Chapter 2

VARIABLE ATTRITION RATES, CONSTANT RATIO MODEL

Seth Bonder and Robert Farrell

In the previous chapter we considered tne most straight-
forward simplification of the basic combat structure--
homogeneous forces with constant attrition rates, i.e.,
attrition rates that are not dependent on battle time or
range between the firing weapon and target. Thus the
attrition-rate functions (see [B, 1.2 and 1.3]) are constant
throughout the battle.

Except for the unlikely situation when neither combatant
moves during the course of the battle, the assumption of
constant attrition rates is highly unrealistic. Consideraticn
of the acquisition, accuracy, timing, and lethality charac-
teristics explicitly included in the attrition-rate prediction
mocels [B] strongly suggests that the attrition rates would
vary with changes in force separation. In this and Chapter
3 we chall consider the effect of this variation in the
homogeneous-force battle model with the restriction that the
ratio of the attrition-rate functions,a(r)/B(r), is constant.l
This restri~tion is imposed for analytical purpcses in that
it facilitates workable closed form solutions that provide

some insights into the affect of maneuver in a battle.

;s
“The results of the previous chapter will, of course, be a
special case of those developed in this one, since the ratio
of constant attrition rates is also constant.
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2.1 Battlefield Coordinate Syetem

As previously noted, the attrition rates will vary when
either br both of combatants pse mobile weapon systems. The
movement of units can be implicitly considered by retaining
the battle time dependency in the combat equations or
explicitly by converting to a range dependency. Knowledge
of the movement schedule provides a one-to-one correspondence
between time and range (force separation) during the battle
so that they can be, and are, used interchangeably. Use
of the range dimension requires the establishment of a
coordinate system for the battlefield.

Consider the simplified one-dimensional coordinate system

depicted in Figure 1.

+
y n force (Red) m force (Blue)
Sm
S, Do r
Vn Vi
r——————a- -
| (
i .—~'Px*

Figure 1. Plan View of Terrain

The distances s, and s, are the ranges of the Red and Blue
lines, respectively, from a common reference axis. The range
between forces at any point in time is Jdenoted by the symbol r.

The respective velocities of the Red and Blue force are. v and




ey N

177

Vi From the geometry of the figure

r = sm - sn Sm > »Sn (1)
and

dr _ ds ) ds

dt ~ dt dt
or

v = vm - Vn . (2)

where v is the relative velocity between the Red and Blue

forces. An examination of (2) and Figure 1 will indicate that
the differential dr has the same sign as v and, accordingly,

the type of engagement to be analyzed depends on the values of
v, and vn.1 In a meeting engagement Vo > 0 and Vo <0
with a resulting rapid decrease in force separation. For
an attack engagement Vo 0 and Vo € 0. The conditions for a
retrograde operation are v > 0 and v, > 0. If v, > vy, the
range‘bétween fdrces will decrease as the Blue force with-
draws. If vn < Vpo the force separation will continuously
increase. When v = v in the retrograde operation, we have
the situation described by Weiss (1957) in which the bat-
tlefield shifts but the force separation remains constant,
i,8., dr/dt = v = 0.

The attrition of forces in this homogeneous-I{orce battle

model is described by the same equations used in the previous

chapter except for the explicit dependency of the attrition

1Engegamente are described with the Blue force as raference.
That is, an attack engagement considers the Blue force
advancing and the Red force defending.




rates on range. Thus

%% = -a(r)m (3)
and
%% = -g(r)n , (4)

where the Blue and Red weapon attrition rates, a(r) and B (r),
respectively, are now aenoted as functions of the force
separation r, i.e., the attrition-rate fuhctions. For clar-
ity, however, we shall omit the functional notation throughout
most of the developments where omission will not be mis-
leading. |

Equations 3 and 4 are used directly in the next sec-

tion to obtain solutions for the case in which alr)/B(r)

is a constant. Explicit range dependency and mobility
considerations for the general case in which a(r)/B(r) is not
constant are.added to the description of combat by trans-
forming (3) and (4) from the time to the space domain.

From k3)
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therefore,,

2
‘_i_’%:-[avg% +vmg%]. (%)
dt
We also ncte that
dn _ dn
¥ "V (6)
and
dm _ dm
aft--VaF' (7)
Differentiating (6),
a’n | d (dn g£)+dndvdr
;:’Z dr \dr) \at dr dr dt
c 2%, avn
dr2 ar &
2
- v2 d°n + dn
;;7 “Ir (8)

where w = v g% is the relative acceleration between forces.
Equating (5) and (8), employing (3), (4), (6), and (7), and

rearranging »

2 .
d W l da dn o -
I [;7'33'5]3?‘ (;g)“-"' (9




Analogously,

2 - |
dm , w__i_ds]dm-aﬁm=o. (10)
e [awe- ()

Equations 9 and lu can be used to describe a wide vari-

ety of homogeneous-force combat situations. If w = 0, the
equations describe constant-speed engagements. As noted on
page 3, the different possible values for v = (vm - vnl
facilitates describing attack, defense, meeting, and delay
engagements, and retrograde operations. Different weapons
are considered in terms of the attrition-rate functions
a(r) and B(r) .

The next section of this chapter presents the general

time and range solutions to the structure given by equations

1l and 2 and analyzes the effect of a constant assault

TSy
.

speed (w = 0) using linear attrition-rate functions for the

Red and Blue weapon systems.

2.2 7Time and Range Solutions®

Consider a re-write of equations 1 and 2‘in which we

denote thr attrition-rate functions as functions of battle

time

% : - a(t)m (11)

lrhe general solutions described in this section were first
presented to the Operations Analysis Techniques working group
at the 23rd Military Operations Research Symposium, West Point,
g New York, June 1969. Solutions to special cases were reported
by Bonder (1965).
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le1

and
= -g(tin . a2)

We explicitly ncte the requirement for constancy of the ratio

of attrition rates as

8

t A .
c= g( ) . 2(0) < ag . (13)
o
wheoe
a(0),[8(0)] = The Blue [Red] weapon attrition rate
when the battle begins at t - 0,
uo[SOJ = The Blue [Red] weapon attrition
rate when the force separation
r= 0.
Letting
t
X =f a(Tt)dr (14)
0

and substituting dx/dt into (11) and (12)

(15)

1S
"
U
B

-cn (16)

Y

Triy et
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These are coupléd, constant coefficient, differential
equations whose solution, using the boundary conditions

n(0) = N, m (0) = M. and g—;-' x=0 - -M, is given as

n(x) = N cosh (YEx) = 3= M sinh (/Tx)  (17)
v
and
m{x) = M cosh (Y&@») - VY© N sinh (/€ x) , (18)

Rewriting ,

3]

t t
X =] a(t)dr %,-/ a(t)dt| t (19)
] 0

=z GtE, t,

where a(%J is the time average of the attrition-rate function.

Substituting for x in (17) and (18),

n(t) = N cosh [/EalEJt] - 1; M sinh [/Talt)tl (20)
and
m(t) = M cosh [/ GTETt] - VEN sinn [/ETTETE]. (20)

If we cornsider a éonstant-spud Blue attack engagement
against a fixed Red defense, i.e., Vo © 0, then v = v is

negative and




i

- (22)

where

'i% - R° = range at which the battle is initiated.

Thus, the range éverage of the attrition-rate function from

the beginning of the battle to range > can be written as

1 - r
F . : m'-(r-——‘_’r)'[a(s)%s-
0
.. R

r
- (R——i—?)j a(s) ds . (23)
c
R

Note that ¢/r) is also positive for r > R, and is assumed
independent of the assault speed.
With this transformation, the surviving forces as a

function pf range to the defenied position is given directly

as
nte) = N cosh [6(r)] N M sinh [6(r)] (2&)
‘ S /e '
N - and
m(r) = M cosh [8(r)] + /& N sinh (8(r)]» (25)

T e
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where

\4

R =-nr
8(r) = /caw) | —= (26)

is always a negative quantity since v < 0 and the other
terms are positive.
The state solution, in either the time or space domain,

is derived in the same manner as the constant attrition=

rate case (see page 168) and given by

a (% - m?1 = g _[N? - n%1. (27)

This is analogous to the classical lLanchester square law,

which implies that Blue would lose, i.e., be annihilated, if

2 2
QOM‘ < BQN . (28)

The fallacy of this statement becomes apparent now
that we are considering explicit movement of one of the
forces, Recognition of the capability to move suggests we
consider an end of battle condit_bion which is different ficm
complete annihilation of one force or a draw in which both
torces iend to zero simul_tanebusly. 'A. force can counter -
the lose or draw cénditiOn by using its mobility. This is

seen in the following discussion which considers. specific

attrition rate functions for the Blue and Red weapont..




famumI b” +iue and Red forces are equipped with weapon

syster: _Lcuth that

2y
F; (Re - r) 0 <r < Re
al{r) =
0 r > R
e
(29)
Ku"’e - r) 0 < < Re
I
0 r > Re
and
B ~
| R—;(Re-r‘) Oirir\.e
ga{r; =
1} r > R
e
(30)
KB(Re - r) 0<r < Re
10 r>Re,
where

Re = the range at which # Jeapon syster first
obtains a nonzerc attrition rate

slope of the Blue [Red) weapon attrition-
rate function .,

Ku[Ka]

These attrition-rate functions aire shown in Figure 2 along with

the starting range parameter for the battle.

datiy s
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Using the Blue attrition-rate function for values of
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O Z - .2
a { - - i o
NGRS [‘Re r) (Rg ~ Ry 1
e’ "0 -

(31)

Substituting (21) into (26) gives

o B
- 0o _ 2 _ _ 2
et(r‘) = 'zrev—- {(Re r) (Re RO) ] (32)
and

n(r) = N cosh ez + ;%: M sinh 9£ (33)
n(r) = M cosh 0, + Yo N sinh 8y - (34)

The subscript £ on 6 indicates it is the argument
for solutions (24) and (25) when linear attrition-rate func-
tions are appropriate.

With these solutions we can see the impact of mobility
by considering the range intervals such that units of the
Red and Blue forces survive. Setting n > 0 and solving for

. in (33), the range ‘~tocrval tov t: Red fulce is

-2R v N VB
-1 o] 2
r >R -J £~ tanh +(R_ -~ R.) (35)
e /a;§; M ’E; e o] L4




and from {24) the range interval Zor the Blue force is

£36)

S W
o
o]
(o]

h .
force has i sur-

We define R§ as the range at which the jt
viving units. Examination of (35) and (36) will reveal that,
if /E; M < /E;N , then R; > Rg, and consequently, the Blue
force could ve destroyed before they reached the Red force

defensive line. From (386)

and,iffB:N>f5;M,

«1fM ’ %
I Re tanh i T
dRm o]

™V
a8 - tanh ° + (R_ - R)
o 0O : e -Q
X N7,

>0

Since, however, 2v is a negative number as |v| increases,

R: decreases as speed»incréascs. Therefore, if the attack
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were conducted with sufficient speed, the Blue force could!

overrun the defended ohjective with some surviving units.
This concept of using mobility to saturate the defending line

is examined at length in Chapter 3.

4.3 Some Historical Perspectives

Recognition of the capability of a force to move, and
congideration of end of battle conditions, adds, in a quanti-
tative manner, another dimension to the classical differential
theory of combat, vis, a force can attack with sufficient
speed to esxturate an cnemy's r<otaliatory capebility. In ac-
cordance with the classical force-concentration principle,
the model indicates that attacking witl sufficient speed and
superiority in numbers is an ideal means of rapidly saturating
an enemy's firepower. More importantly, the model suggests
that, in the absence of force superiority, an attack with ade-
quate speed is a means of conserving one's own force, i.e.,
get the enemy before he gats you.

Since it is difficult to conduct experiments during
military actions, deductions of this natuve are hard to verify.
In addition, the unavailability of reliable empirical information
regarding past battles (Schroeder, 1963;;Helmb91d,11964)
precludes quantitative comparison of the model in retrOSpect.
The concept of attacking with appreciable speed to saturate
an eremy's retaliatory capability does, howaver, appear to com~-

L pare favorably with military experience.

-

bl




In discussing the offensive employment of tanks, General
RBruce C. Clarke noted (1962):

Always use the maximum number of tanks practicable
in the assault. Move fasi in the assault. Close
fast with the enemy. Fire tank machine guns on
the mcve. The tank casualties you wili suffer
will vary as the &mount of time it takes iIrom the
line of departure to the objective. In a tank,
'speed is armor.' Thus the tank tracks.

if properly used, are both an offensive weapon and
a help in its protection.

During World War II, Field Marshall Rommel frequently employed
panzer attacks against larger forces. This is noted by Al-
fred Gause, Rommel's chief of staff in North Africa (1988):
The general strength ratios and the supply situation
compelled Rommel [italics mine] almost always to
attack numerically superior forces. Thus, in his
attack against Bir-Hacheim-Ain el Gazala positions,
where he sought to force a decision, he deliber-
ately opened the offensive on 27 May 1942 with
an adverse strength ratio of 6:9 in tanks.
The Sinai campaign (O'Ballance, 1959) describes small-unit en-
gagemants in which the victorious Israelis conducted succesc-
ful attacks in the face of strongly entrenched Egyptian posi-
tions, This campaign represents the most recent, but by no
- means hiw*or*cpily isolated, demonstration that satureff?p of L
an enemy's retaliatory capability by rapid assault is an'imporF o

tant factor in successful combat.,

i B b
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PUTICT OF MANEUVER
CONTTANT-RATID ATTRITTON-RATI FUNCTIONS

W. P. Cherrv and Seth Bonder

The previcus chapter presented a general solution to the
homogenecus-~force, differential model of combat with
constant-ratio attrition-rate functions. Explicit consider-
ation of assault speed and force separation in a Blue force
attack engagement indicated that three outcomes are possible
in an engagement of this kind:

(1) Annihilation of either the attacker or defender,

(2) A draw in which both sides tend to zero simul-

taneously,

(3) The attacking force overruns the defended position.
In this chapter we shall =xamine the conditions under which
the third of these outcomes occurs and, in particular, study in
detail the effect that assault speed has on the battle results.

It is reasonable to conjecture that, if the defended
position is overrun, the ensuing "-lose-combat" battle
{i{f . ~e ocours at all) ‘1 nor adequesrl: e described by
our basic differential equation strucfube. Accordingly,
it is of interest to examine the impact that assault speed has
on indicators or measures of future success in taking fhé
defended position, where success implies wirning the "close-

combat™ battle at the defended position or having the

o A e o et
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defenders retreat before the objective is reached. The

measures considered in this analy:is are the difference

(m - n) and ratio (m/n) of survivors when the attacking force
“5;5” reaches the defended positiorn (r = 0}. ' The 2ffect of as-
“1‘;; sault speed on other measures of success, such as the ratio
;f;:; (m -~ n)/(m + n) at » = 0 or the ratio (m/n) at range r,
. can be obtained by a directly analogous approach.

Before proceeding it is important to remember that the
{; . analysis is based on having a constant ratio of attrition-
’bfii rate functions. Accordingly, the results should not be
S interpreted in any absolute sense, lut rather to provide

some basic insight into the dynamics of combat.

3.1 Preliminary Results and Notations
In the preceding chapter we showed that the surviving

numbers of units as a function of force separation was

given by
n(e) = N cosh [6(r)] + == M sinh [6(r)] (1)
Yo
and
m(r) = M cogh [6(r)] + /o N sinh [68(r)] , (2)
where

Yo alr) (fov- ri) (3)

o(r) =
, c = B(r)/a(r) = Bo/ao
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r
alr) = - -(r—l_—?)f a(s} ds . tu).- ...
() ;
R
o
At r = 0,
n(0) = N cosh (8°) + - M sinh (6°) (5)
[
m(0) = M cosh (8°) + V€N sinh (2°), (8)
where
8° = 0(0)
N Ro
= /E G.IU) t,— (")
= C/v (8)

since, except for the assault speed, all the terms on the
right -hand side of (7) are treated as constants in the analysis.

We note +that 6° < 0 and that

o /& TTOIR,

0° _ _
2
v
0 .
z - g- <0 . sy

We also have

1}

o o o] 39°
Eﬂ sinh 8~ + Bo/ao N cosh 6 ] T

(10)
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o
- (11)

(>3]
<

|

- T

Q)

by subititution of (1) and T e

an - cint aC : o] 89° .
o no = fﬁ einh 0~ + 'Jao/so M cosh 8 ] To (12)
- L.

For the measures (m - n) and (m/n) at » = 0 to »e mean-

ingful, we must axclude cases in which m(0) < 0 and a(0) < 0

2

For o M" < BONZ, the asnault speed which will result in

m{0) = G is obtained by setting (6) equal to zero anaisolving

for
Vm=0 = =C ’ (1)
-1 |70 M
tanh —
VB, N
where
c = /e a(0yR, - ~(15)
. 2 2 -
Analogously, if GOM > ﬁoN » then n(0) = 0 at
- -C
vi=0 . . (16)




196

Thus, the defended position will be overrun for assault

m=0 ns . .
speeds -v > -v or =v > =v 0, which ever is appropriate.
Cur concern in this analysis is the effect of assault speed

in these intervals.

3.2 Different Atiriiion-Rate Functione

Analysis in this chapter of the effect of assault speed
on the measures (m-n)and (m/n) at r = 0 is general inr that
it can be applied if the ratio of the attrition-rate functions
is constant, independent of the shape of the individual attri-
tion rate functions. However, the magnitude of the speed
effects will vary when different attrition-rate functions are
used. In this section ;e list a number of attrition-rate
functions that have been specifically ccnsidered. The func-
tional shapes were suggested by examining the range variation
in predicted attrition rates for weapons with widely different

characteristics.l The constant Lanchester attrition rate is

also included.

lhis examination was made using arithmetic mean rates, E(%),
before it was shcwn that the appropriate mean fate to .
use is the harmonic mean, 1/E(T), as proven in (B, 1.2). Since

) 2 iy ¢

the reader is cautioned that other functlonal forms may be
move appropriate.
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. Linear:
i o
i:(Re - 1) r < Re
az(o) =z (17)
0 r > R
e
Ro o
az(O) = == f Fg (Re - 5) ds

0

= v - 2 -

= ﬁz(o. ('ZReR0 Ro ) (18)

60_/&:3; (2RR_ - R_?)
f 4 iﬁe v e'o (o}
C
- A {19)
Quadratic:
uo(l - ﬁ:)z r < Re
ué(r) = { ', : (20)

0 r > Re

e

LA J




Cosine:

uc(r)

a_ ()

»

Ro
1
— a a
Rof q(ss) s
0

1 2 3
o7 (3R %R - 3R R+ R (21)
o e
Yo B
o"o 2 .
—7o (RR, = RGR, + R
e
C
|
v (22)
%o w
-3 [1 + o8 (R:) r < Re
(23)
0 r >_Re

‘;'3"2{%* ~$ sin’ !.9.)1

N
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L T .
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o

(25)

-
<

Exponential:

(26)

ae(r)

e - Q'Re R,
w» =a -l -1 (27)

s e e o e, Ep——

o

c _
e : ‘
& - , (28)»
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1 Fo
uL(O) z ﬁ; uL(s) ds
1]
= ao (30)
o aoBoRo
oY =
L v
()
. L
= (31)

The surviving numbers of forces for some of the different
attrition-rate functions are compared ir Figure 1. These
are obtained by direct substitution of the aépﬁopriato éttrition-
rate function in (4), (4) into (3), and then (3) into (2)
and (1). The marked differences betwlén the farhhlations ave
evident--especially between the varicble attrit;on-tate form- |
ulations and the Laneheater constant attrition—ratc one. _
For example, ‘the constant attritxon—rlte colutipn_predicté_'»A
anhihiiatibn df'tho Blue force at 7co~mkt§r| with‘twb rcﬁain-
ing Red units, vhile un. of quadrntic attrition ratc funnt;oﬁg .
would prediet ten Bl ue and four Rcd .urviving unitl. At |

| shown in Figure 3 tha-e difforoncua are redueed uhon thc en- F~j7f'7

.gagcucnt range (R,) 1: n“eh lost thln tho fo‘bti?‘ rtago of

.
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ottt
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the weapon (Re)’ and, in the limit as the weapon's effeactive
range approaches infinity, the solutions converge to the one
with constant attrition-rate functions, aL(r). This obtains
since the differences in the solutions are solely dependent

on the form of 6(r} and

Lim el(r) = Lim 6 (r) = Lim 6_(r) = Lim 6 _(r) = 8, (r) .
R e R-boq R-saoc R-bue
e e e e
It is of interest to point out that the large effect of
the assault speed (noted in the last chapter and in following
sections of this one) and the difference R, - R, (noted abuve)

on the numdbers of surviving forces may explain some of the

conflicting conclusions of studies to verify the classical
Lanchester  theory via the correlation between observed and
theoretical attrition histories of battles.l If a ﬁattlo were
fought without appreciable movement or if R, were Appieciabiyj
"lqid'ihnn Res observed attrition dntqvnight cotrolgfc w;th |

predicted attritioh of forces in a battle regardless of the .

‘Apartlcullr»uqapon ¢hatnct&rist1eu. 1.e., itttition-rdtc func- -
tions. If, however, the forces capicyod moving weapons, qndv ‘
R, = f‘; failure to explicitly coneider specific variations in

_.ﬁt@hoa.gft:i#ion"ﬁnﬁfe with ranc.,night veadily ptoduce 1nr§d

deviations betwsen observed and predicted force attrition.
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3.3 The Difference (m - n) at the Defended Position

In this section we consider the difference (m - n) at

r = 0, which we denote as do' For assault speeds -v < —vm=0

ne(

or -v <=v'", as appropriate, do is a constant . This is

seen by considering a°M2 < BoNz. Then for _v.i_vm:q m

1]
o

for some r > 0 and

no-o N cosh ¢ + ¢a°790 M sinh ¢ | (32)

where

M /a
~tanh™} | —2 (33)
N /B

©
[1)

is obtained by setting (2) equal to zero. This implics
|
that 0° = ¢, which is a constant. Thus, for -v £ R 0’ o

2
d°-~-n =0 ° which is a constant. Similarly, for a, Hz > Bo |

n# 0, d. , which is a constant such that

and ~v < =v nso
‘mntﬁ :nH‘cO!h_v»+_ GE7§; N sinh ¥ » | (33)
" where
v ;tanh-  -‘35) o

'iis cbtainod bv setting () cqual to :cro._ Thuig”fér'

0. < -y <-v oor-vn 0 3d /3v z 0. Thc value of d‘ for
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this speed interval I3 ccnstant Sor all attrition-ra*s fune-

tions and depends only on M, N, Aqr Bgr

Substracting (5) from (6)

(BN = a M)
d, = (M - N) cosh 8° + —2 sinh 6° . (36)
<!OO
Setting do = J implies
BN-a M)
(M - N) cosh 6° = =2 (-sinh 8°) (37)
ub()O
(M - N)JQOEO

=tanh 6° s
| (§gﬂ‘- a M

and since 6° <0,

(M - N) /uaio‘

- <1l . - (38)
(BON - aOH)

0 <

Suppose (M < N) > 0, then (B N - a M) > O and
0= NIRRT < BN - oM

which 1§pii.¢“u582,< 86“2?.‘ Siﬁil&rly; the assumption |
that (M - N) < 0 implies that a M’ > 8 N’. Accordingly,
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for (M - N)(SON - aOM) > " and

2 2 ie (M -
a M < BN Af (M- N) >0

uOM2 > BON2 if (M- N) <0

Thus, d, = 0 for two sets of initial conditicns =

Condition I: Cendition II:
(M - N) >0 (M - N) <0
a M - 8N <& a M - 30“_>.° - 39)
2 2 2 2 .
aoM - BoNv < aoH- . QON > 0

The speed that results in do 2 0 is obtained from (36)

by

Consider the quantity o

» H Jo M - N)hoa
D - -----—--2 - —TT:-E‘“E
N

c. 0

i w2 - o N
=»JE;(8°N a M)
/BN

A ’ : o (1)
(BN ';°c") _ ,




So far we have consideie«d the cases in which JC ecuals

2 constanst (-nm:Q or m__q’ and do = 0, We next exanine the
vn:G or

sign of dg whren it is not a constan:, i.e., =v > -
ms(C

-y a3 appropriate. Examination of (36) leads directly to!

I. IfM =N,

(1) BON—gOﬁ>O'=>m-n<0
(ii) BN-oaM< 0 m-n N

JII. - If M> N,

(i) BN - a°H < p=m-n>0

i

]
e

v
<

(ii) Boh - GOM 0 =2 m‘

ITI. If M < N,

i - > = -
(i) BON GOH 0 sm = n < 0

'
3.
.
o

=>m

1}
(4

(ii) BON - noh
This leaves the fol.lowing cases for consideration:

Iv. M> N and (BN - a M >0

2 2
(1) oM > 8N

U P T

AR e e e Uil .
ST R S T
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V. . M < N and (BON - GOH) < q
iy 2 a2
‘ \l) O-J\1 > '-.O"q
ciy . w2 ;2
{¢1) *o" < Boh .

rases IV(i) and V(ii)

Consider Case IW(i). Suppose d < 0, then rrom (36) this

impiies
M - N) V3B, o
: < ~tanh @
BN -a M
M - N)¢a°5°
0 < ¢ <1
(§°ﬂ aoﬂ) ’
M- N /A B < BN - aM
or .

o M2 < 8N o

which is counter to the assumption in <his case. Thus d, ¢ 0

and, by re.ersing the inequality, it is easily shown that, in

'
po - -
Y S




Galalks S CT G R 2 .. g win o

implies
oy | M - NWa B
-Go > tanh 1 'TN‘:T.‘,ERE
o 0
and i
C -
-y < — = -y R
(M - N)WVa 8
tart™! [{ﬁ"-—'ﬁr‘"]
o' "~ %
For do > 0 it follows that i
-y > =yB°R | ' | ’ - 15
In an analogous fashion for Case W(i), it cen be shown that
and
dy > 0 if wv < P L
| : g
- i . i
. e E
. S ;
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fact, d°

it can also be shown that do < 0 for Case V(ii).

> 0 for Case IV i. By a directly analogous argument

Cases IV(ii) and V(i)

Both these cases lead to d° =0 if v = v®0 given by

(40). Consider IV(ii) and suppose d, < 0. From (36) this
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A summary of the effects of variations in M, N, % s

B, on d are shown in Table 1. The value of d, depends on the

RPN

signs of | | i

'
i

-

Initial Conditions: M=-N

L dd

Linear Conditions: ~ o M - BN L

- et g
A e

Quadratic Conditions: a°M2 - BONZ

The condition a°M2 =z B°N2 is also included in Table 1.

[

Substituting for M and N in (5) and (6), respectiveiya

"

x

o
<

n(0)

and

"
=
®

m(0)

For M # N, 5 ‘ -

’ : _ EEEE
F e

d =(H'N) ee »

Thus, d has the same sign as {M - N) and cannot be zero for

iy A sl ]

» fxnite Ve, ‘ o , ' S : “i;.ﬁ
Finally. we note that as v » -', d, + M- N~ ‘This intei- o
""c.i‘vely obv_;ons rcsultvobtein; from (38), wh@o » o

lim d (n - N lim cosh o e st - u. linh e o

.=HQN'

gince 6% = O/v .
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fcble 1 'The Difference d_ As a Punction of M,N,a_ ,8

T —p—— 72'”“':”:;

0o <0 <0
? >0 1 >0
>0 § >0 >0

>0 0 >0
>0 <0 >0

>0 <0 <0

- <0 4 <g - <q
<g 0 <Q
<0 i >0 <0

<0 >0 - 0.

>0

1 s
<0

-V

-V

! dbr= (m -‘n) at r = 014—

<0
>0

>0
>0
>0

“EFNR-aW

° o

tanh
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which is peositive for condition I in (39). Héhée,

W=D L mEn 3

Consideration of condition II in (39)‘analogoné1y‘i§piies
n=0 _ _ m=n N L g;§§i§¢)ﬁm¢

We note that for d_ = 0, m = n, 6° is fixed,;aﬁakfﬁémwfs)

and (6) : o ) : - ,jy: R

t

83
]
= |
"

M cosh (@) + VB TGg N simh' (@)

™,

N cosh (95 + Qangz,MLSiﬁﬁ’(n.f

where

9 = ~tanh™t feipg

Thus, the constant m_ = n is ihaep%ﬁaéﬁ% 3ffthéff§fﬁbofffhe";"ﬂﬁ

attrition-rate function.
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In this section we examine the behavior of the derivatives

i

g1 v

i;f : l 3.4 .The Derivatives of d
I

of 4, with respect to the assault speed v. From (36)

=

od

N o T 3T *

= {(M - N)-sinh 6° + —O—— O __ COSR 67) 30 . (y7)

Consider first the cases in which d] = 0. Settihg {u7) - - s
equal to zero, o
) BgN = aM e
. o . (M - N)JQOEO L u” "
- ) which implies : . ) r
< .

I1f

@m0

s e ¢ Wy T

s : - T AN ea M > 0
P BN =8t > ©
i ’ - - el :

. T

4 ' :

¥ N .

; 5

fowre
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then from (4¢) this implies a_M? > BN, 1f
(M- N) <0 S R
BN - a M <0,
then this implies aoM2 < BBN?' | _ | f'i - f
Employing (10) andgkll);’d;_ban,be'writfehéés ,fﬂ
CC51)
and 2
324
4a” = —
°- 3v2 [

and from Table 1,d, > 0. Therefbre, d" >0 whichf‘nu

that'd is a mlnlmum at the speed for which d’ s - O
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f
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directly analogous fashion, the conditions of (50) (and the
implied a°H2 < soxz)' suggest that 47 < 0. Thus, d, has a
maximum at the speed for whicﬁ'ds = 0. The speed which results

in dé = 0 is obtained by setting (47) equal to zei‘o and solving

for

dé=0 c
- - BN - o M (54)
tanh 1[ 2 o
M~ N)JuOBOJ

)
<
1

using the condition (49) or (50). It is shown in Appendix C, 3

that fhe limitvof dg is zero as fhe~§ssau1t speed ;;prdaches

infinify whether or not dé = Orfoi~1ower assault spéeds.
Consider:next‘the case in whicﬁ‘dé # 0. Since

20°/3v < 0, we haVe,ﬁifectlyzﬁrom (u7)

. s — am-n
(i) aM-BN<O: > S— <0




This leaves four casas for consideration. The first is

M-N>0

ag = BN < 0

This is condition (HQ). whicﬁ leads to dé 0 for the assault

speed given by (54). For'dé‘<~b, (47) leads to

M - N)Jaoﬁo

and for -v < -v ’ dé > 0. Ina dircdtly analogous,fashion~

the case

M-N<O

_“0” - BN>0
2 _ w2
leads to

-V ¢ =\

>~fd;_<'ﬁ7~

v > -V

=> 420 .

This'égSe i§'¢dnéitldﬂ.(sb) ;

[y
e

o

hso

gy
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!
The third case is
IIIO M-N>0
aoﬂ - BoN <0
2 2
uon ‘a°N < 0 .
Consider (47) and suppose
- BN - oM -
(M - N) sinh ¢° + 22— cosh ¢° < 0 . (56)
| vacB,
This implies
Bﬁ—aﬂ
0 < <1
~ M~ x)f'!‘ :

L]

= B°N2 < qoﬂz

_ihich iﬂVQOntinry’to~tho abcvg‘assumptionj Since the left -
Lhaaﬁ nid; of (56) is not cqual to gero under the state conditions
'°,it uutt bi grnltcr thnn zcro. which implies that dl < 0. The

>'1 a H --3 N > 0

uH2-832>0
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is analyzed in a directly analogous way to Case III and implies
a' > o0,
o
The two conditions specified by (49) and (50) have
assault speeds such that dé = 0. For (19) we have vn=0

given by (16). The difference

&ON - aoM
o' Yo '
/aoﬁo (M - N)

(£7)

—_— 2 [ 3 2
i, BMN - Vo B N° - Ja g MN + Va °N

/oT; M(M - N) /u'oﬁ'c

Q

/& (a Ml - BN

- —— o p— > 0 .
Yo b - N) Y B
- Therefore ,
By-
L o R - %"
S AR M- n

and




In a similar fashion from (50), B Rt y Wiere -v

is given by (i5).

20 R Tt il

Finally, we note that at dg = 0

i

.. m =M cosh y + /Bo7ao N sinh x (58) i
. i

|

n = N cosh x + Ve /B M sinh X, (59) )

where 1

BN - a M d

(6G)

X = - tanh™?

M - N)JGOEO

Skt i g Ty e

The constants in (5§0) are independent of the form of the at-

trition-rate functions employed.

Table 2 summarizes the results of this and the previous k-

saction. The different cases have been numbered to correspond

to the numerical examples given in Section 3.6.
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3.5 The Ratio m/m at the Dafended Posi“ion
Tn this section we consider the ratio m/n at r = 0, which

we denote as o The derivative

nam mon

C v
T

.
% " W

(o]

l'f‘-7'—2 f——r—-239
?{Bo“or“ - °osom}‘§'v_

when (10) and (11) are emplbyed. Since 26°/2v < 0, the con-
dition that o(') > 0 implies Bonz - a°m2< 0 at » = 0. Sub-
stituting (5) and (6) into this condition

-"3“'2. coshle + 2 mo NN sinh 6 cosh 6 + ;2 4% sinhle
: o o ‘ *o e

{. 8 |
| n’ cosh?e + 2 /307 o MN sinh 6 cosh 0 + =2 N? ginh%e,

vsox" fcochgb'- - einh?0] < a_M? [cosh®® - sinh®e]

=D R ca

"»0 --)B! 3%)(

I -




and

' ' 2 2
pl < 0 ::§> BN® > a M .

These derivatives plus the fact that @ d > 0 implies p, > 1

lead directly te the results found in Table 3.

3.6 Some Numeg‘-iaaz E-.tamplea--'-zi.ncar A.ttrition-Rate Funcetions
This section presents a ver-bal descr‘lptlon and some spec:.-
fic numerical examples to . amph.fy the mathema:tical results ’
developed in Sections 3.3, 3.4, and 3 5. Th% examp,..es employ
“linear attrltlon-rate func’tions from the Blue and 'Red %eapoms.l

The conditions consmdered correspond to the caSes listed':.n

Table 2 and are orincipallv ccmrerned with s:[tuation'

R4

which the B)ue attack for-ce overruns the deAended pos ‘

desire to do 8o w:.th mxﬁnum‘ d

.2 {m - n) dt r*‘fl:j

that a(m = n) > 0 or that tfxe

greater than the 1ncrease in Red sux‘vivors. o
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Cage I M= N

aoM - BON < 0

2 2
aOM - BON < 0

Blue is linearly inferior and, coupled with the initial

m=0 the attack-

equality, is guadratically inferior. For -v < =v
ing force is annihilated at seme r > 0. For -v > -vm=°, Blue
overruns the Red defensive line, but is always inferior

(do < 0). Since dé < 0, Blue's inferiority decpeises as thé
attack speed increases. Minimum 4 occurs for -v < ~y"=0

and increases to zero as speed increases.

Jase 2 M=N

aoM - 'BON >0
2 N2
QOM - BON > 0.

Blue has linear superiority and, coupled with the initial
equality, is quadratically superior. For =-v > -v?“o Blue
has terminal superiority. Since agti 0, as the attacking force's

speed increases, its suﬁeriofity at r = D‘decééasegqpyﬂtxiﬁum

S

n=0

superiority cccurs for =v < =v and decreasee to Zero-as speed

increases ,




1 Coses sand ¢ M -N>0 . . -
‘3 . - (3) abgl - 8N >0 o - - ]
. ’ ~ . - %] a ¥ - BN = o_ .
. ! In both cases Blue has quadratic su:aeriority. Hence , for
: v L -vn o. the defu\dzng Red force is annihilated by Blue at
| I lclu r > 0. Foc -v > -vn 0 thl Bluc force overruns the
2 é dqfiniive position, clw:ys with terminal superiority, o > 0. _
In thil cau, d", >0 amd d dusreases as speed increases. - :
B ' md ocours at v<-vr‘°uxddacx~usutoﬂ-uu '
- E B m.. : o B ' S ‘ : . i
| ﬁ "“5 i!_~-lt>a o . : ) ' o

.d" ‘_.”‘v -’
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That iss V determmnes 1t Blue is tcmim!y mp&i&*, o . f
equal; or- 1nfem.or. Minimum d, (<0) occurs for - < _,mo ) ;

' The difference-d incrauu to M - N as speed increases for ) }' -
-v>-v-:°. - ‘ T ‘_ o -

' E:l;nro 3. in a grtph of d° as a funct:lon of mmlt speed

. for speeific values. of H. X, ‘o' 8, cmospondiu to case 5. . ’ L :

only:avoids snnihilation but also easures miﬂl uporimf'l‘y ﬁ

g agesd 1s dindnishing. Tid ckn w‘»m-u_ ';_;:;’

. Cqu C N - 'l’l'i,o
u ll - &QI <. 0

m linear attyition-rate fnuction hn been used with R
2000 mera'. 'I'ho bgttle r,tm: at R = 2008 mt.n‘ Mc iﬁlt ) . E
in this situmion, by npyropﬁatc choiee of speed Blue no% .

et r = 0, | , . e i
rizurn . and immphlefﬁ,\,udo ﬁeﬁ- mﬁm;on li
u‘-"icnrc 3. ﬁommt the "peturn® :ﬂ.u:-~=~ -

mtis.d'>eandtg:da , sa ¥y %0 Ay
of p indieuu.amid 1mm| tomﬂh'

ﬂHz'.“2>°o

Bluc nluays hu m‘.mn sap:eriurity, 4,

oacurs for =y < V"% In et eituncls
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o - 345 M=30 N=10 Y
3 it . i < 13@ ' %&2<B°Na
T 3.2} §2=1 ()MO'2 €oM< < SoN

Re = D meters m=25,81
n=8.75

P e e

RQ =2000 meters

V (miteal r)
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30

not monotonically decrease to M - N, but has a minimum, after

which d0 increases to M - N.

<{ > c
a!l = for -v = .
o 4
>0 <} tann~! [ BN - a M
' anh
AkM - N) /aoBo

Figures 6, 7, and 8 are graphs of do, dé« and Po> respectively,

in this situation. HNote the minimum of do at v = 43,20 and
the zero of d) at that speed which indicates that the sign of

the return changes from negative to positive at this point.
Cases 7 and 8 M-N<D0

(7) QOM - BON < 0

(8)>QOM - BON s {,

In both situations Red has quadratic superiority, and

m=0

hence, for -v ¢ -v" °, Blue will be annihilated at some r > C.

Further, since-do < O}for -y >-vm=°', B1ue>is never terminally

superior. 'However, dé < D_And thus this inferiority at r = 0

decreases as speed in¢reasés.to}ﬂ;- N. Minimum d (<0) occurs
. me0 S | |

at-V:-_"V v

+

-

[

I
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N = \ -1u

- =4x10“ M>N
g°=10x10'
Rg=

ol < 35N
2000 meters @ M2>B N2
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Case 9 M= N< O
‘aOM - BON > 0
a M’ - 30N2 > 0.

n=J the Red defensive

In this engagement, for -v < -v
force will be annihilated for some r > 0, In this case termi-

nal superiority depends cn a critical speed since

<0 > o
do 0 for =v (= —
>0 <} cann~) [(M - N) Yo B, ]
Béﬂf: o H
0

Here maximum do (>0) occurs for =v < -v™Y and Blue retains

terminal superiority so long as

-v( C | =c
(M - N) /a_B _
tanh™! °°
‘ESN - a N

As speed increases d, decreases to M - N, and dé >0 .
Tigures 9, 10, 11 depict do’ dé, and Py respectively, for
this case. Note that in this situation it ie to the attacker's

advantage to proceed slowly.

‘Cage 10 M-N<GC

M= BN >0

AR

-'5 - a e :
a’nM ﬁoh < 0.
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m=0 4 pe Blue force will be

annihilated at some r > 0. For =v > -vm=0 Blge,will'ovevrdn

Under these conditions ror =v < =v

the Red defensive position but will always be terminally
inferior, d_ < 0. However, d! depends on v in the following

qanner:

<0 <
. -
d0 0 for =v =
>0 >
and dO has a maximum at
-y = —-——-——-—-E-ﬁ o
- o [ ]
~ ~1r ] %
tanh ° ———
l_(M - N v
m=0

Minimum do (<0) occurs at v < =V . do increases to a max-

imum then decreases to M - N. ‘These results are shﬁﬂn:’

in Figures 12, 13, and 14.

Cases 11-13 aM-pgN =0,

ase | ot o 0

It was shown in Section 3.3 that in this ¢339
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Similarly, if Blue is 1i1nitially inferic, Biue will not have
terminal superiority, do < 0 and as speed increases d, decreases

toM - N, IfM= N\, the forces are equal for all assault speeds.
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Appendix C, 3

i
i

THE LIMIT OF 4' = 8{m = n) -
! ° 9 v r=9 ' s

WHEN SPEED APPROACHES INFINITY =

Peter Cherry

Tn Section 3.4 it was shown that

G

-C
- Ea 2

E é do = (M~ N) sinh o+ - 2 cosh 8 (——-) . 5
o O

Since 8 - 0 as v + ~-=», the 1limit of dé is zero an¢ the 'return”

from an increase in attack speed eventually must be diminishing.

E

The "return" is considered as the magnitude of the change &d ..

E Ry This is seen if we write 4] in the following forms: _ ;éf

e & 400

2 ~ . . 2, B N-a M |-
If a M8, - o) > B N(B ~a) = [(M- N)? >[¥a._£:,,. .

then ‘ - B | 9

Gelhbicaumd okl dhant i e

d’ = D sinh (0° + ¢ %g , | zéj

S where

g.
1]

1_fs;gn (M_- Ni}j VA : ’ f;

s
N

>
T

=N

E '-‘ . , B = BON‘QOM
‘ /a_ B

[~ D &

¥

 rhe function sign (x) = T=T °

L CaEEl S e e e B




AL

BON - aoM

/a By (M- N

¢ = tanh

2 BN - am\’ 2 2
If (1 - NS < e~ za M°(B_ -2 ) < BNU(B - 0o},
ther.

30

. o
dl = R cosh (8~ + V) v

where

[sign (BN = a )] V2 - a?,

R

>
"

M« N

BON - a M
Va Ry

[« 2]

R =

r
ZJNH-] L(M - N VGO O 1

EON - aoH J ‘ 1
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P

. . . o
If y or ¢ is negative, then the functions cosh (6~ + %) and
. o . . .
sinh (8~ + ¢) are monotonic, decreasing as lv} increases and,
hence, |d|| is monotonic, decreasing as |v| increases.

Letting f(v) =dO at assault speed v, then
|£Cvyy = £y, = |f'(§)||V; - v, .

|£'(£)| is monotonic, decreasing to zero, and then implies that the é
"peturn" |f(v') - £(v)| decreases for |v| increasing if
[v' - v| is held constant.
For the cases ¢ > N, y > 0 the above reasoning holds

only until o° = -¢ or Y and f'fe) = 0, In the case 9 > 0-
we can argue that at ° = - ¢, the function has a.minimum
or haximum and from that point increases or decreases to
limit M - N as |v| increases. Furthermore, this increase ;
or decrease is monotonic since d, = D cosh (6° +¢ ), &° > -9,
Kence, while the "return" from an increase in attack speed
may increase, at some point, specifically where dg = 0,
the return begins tc. diminish and continues to do so thereafter,

In the cese ¥ > 0, d =R sinh (8° + ¢) changes sign at ;
6° = -y . Sinh (6° + y) is monotonic increasing with respect
to 69, 8" = % is monotonic, increasing with respect to v as
v | increases. The functicn 6° = % » moreover, has a decreas-
ing "return" as |v| increases; hence, sinh (6% + ¢) has a

decreasing return as v | increases, i.e., Aﬂo decreases, for

constant Alv| as |v| increases, and 4d does not charge
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sign in this case.

IfF M- N = 0,

If BN =~ aOM = 0,

Vs (M - : a6
do = (M N) sinh 0 3 .

In both these cases |[f'(£)| is strictly monotonic, decreasing
to zerc, and the return = [AdOI is diminishing with respect

to a constant increase in speed.
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Chapter 4

VARIABLE ATTRITION RATES, ANALYTICAL RESULTS

Conald Ballou

Chapter 1 of this part of the report considered the case of

constant attrition rates for both the Red and Blue weapons.

Chapter 2 presented the solution to a special case of variable

attrition rates in which their ratio is a constant. The

effect of mobility for this latter situation was examined in

Chapter 3. In this chapter we consider the general form of the

homogeneous-force oattle model with variable attrition rates1

dn _ a(r) n
dar -~ v{r)
dm _ (r)
Ir T vy "

and the case in which weapons on both sides have linear atiri-

tion-rate functions:

KQ(Ru -r) r <
alr) =

0 r >

KB(RB - 1) r <
g(r) =

0 r >

lﬂotation used in this chapter corresponds to

in previous ones.

(1

(2)

[s ]
(3)

RQ

Rg
()

Rg

that employed

L e i




In the general case the assault speed v(r) is a positive furc-

tion of r and in the linear attrition-rate case is assumed

constant., i
The general methods applied to the study of these differen-
tial equations are
(1) generation of a sequence of successive approximations

which converge to the solution of the equations,

each approximation of which may be generated from the .
preceding approximation by elementary rathematical oo
operations (some analysis of error bounds is included);
(2) generation of a power series solution to the system
of differential equations;
(3) comparison techniques to generate expressions for .
upper and lower bounds to the solution of the system -
of equations; and

(4) quasi-linearization to obtain a soluticon fer the razic

P = n/m as the maximum of a fairly complex integral

and algebraic expression. .

Although none of these techniques has led to immediately useful -
results, they have given rise to some limited insights and show !
promise for more inferesting results with further r-esearch.

The next féur sections are cevoted to presenting tne results
ol these studies. They are presented in the order listed

PEY

abuve, which corresponds to our present understanding of their
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usefulness and promise. The results in each case are stated with
several of the proofs only outlined or omitted where their
developments are obvious or mathematically straightforward,

A discussion of the Jifferent approaches and an evaluation of
their relative strengths and weaknesses is presented in Sec-

tion 4.5. Future research directions are discussed in Section
4.6 along with some thoughts on ways to enrich the present
results.

Clearly, applications of the solution functions are
mearingless if they are negative. However, from a mathematical
point of view negative values for the surviving numbers of
forces presents no difficulty, and hence,in all *he presentations
the functions n(r), m(r) are considered on the closed interval
’[O,Rol regardless of their sign.

The following theorem is of a general nature and gives an
idea of the behavior of the zerss of the solution [n(r), m(r)]

to (1) and (2) on the interval [O.Ro).

Theorem 1

The solution functions n(r) and m(r) to (1) and (2)
can vanish at mos* once on [0,R)). If either n(r) or m(r)
should vanish on [0,R)), then the other cannot. In
particuilar, n(rl)_= m(rl)‘= 0, rle[O,Ro), is impossible.

The proof is based on arguments concerning the sign of the

derivatives of n and m at any zero.
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4.1 Method of Successive Approximations

Trhe first part of this section gives results for general
a(r) and B(r), while the second considers the case of linear
a(r) and B(r). In order to use the method of successive

approximations, the system of equations are rewritten in matrix

form:
g% = A(r)e
(5)
¢(Ro) = £,
where
o) = (nie)
0 a(r)/v )
Alr) = \gip)/v Y (6)
g = (,’j) . (7)

‘Note that if ¢ is continuous and satisfies

r
otr) = £+ [ A(s)o(s) ds , (8)

%o

then, since A is cohtinuous,
d — Alv Ya
) = ametr) .

The Jderivative

B gy,
' -

Bl )
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g . (dn/dr)
ar dm/dr

and
r
¥, (s) IENORE
Jrr 1 ds = Ro
v, (s) \ r
R
o

with ¥(s) = A(s)¢(s). Thus a solution to our original equations
is a ¢ satisfying (8).
The solution ¢ may be obtained using the method of succes-

sive approximations. For this let

¢o(r) = £, (9)

ani define oj(r) recursively by

r
by = £+ f A a5, 3= 02,0 QO

Ro

The following lemma is the key step in showing that the

sequence {Qj§: converges to a solution ¢.
3=0

Lemma:  Let

. R |
' (o] :
K(r) = f [Sé.i.’. . ’ﬁéﬁl] ds, 0<r< R . (11)
r
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then
3
Jo5 0 = a5y < [ e, 51,2,
where

-

The lemma is proved by fairly straightforward induction, using

<a1,a2>” = Jagl + la,l

integration by parts.

Theorem 2
The approximations Ok given by (10) converge uniformly
to the solution ¢ of (8) in the norm given by

->
a

l = lag| + |ag|

(al,az)

That is, given ¢ >0, there exists a k such that

In r) = nCe)| + |m(r) = m(r)] <e, 0<r <R ,

where ¢(r) {(n(r),m(x)) solves (1) and (2). Furthermore,

I¢ (r) - ¢(r) Es(r) (1)
where
| 4 27 B
£y = v fexp k(o) - 26 el ], an
: | g=0 *°

with E{r) slven by (11D
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This is a direct consequence of the lemma, using the power

series expansion of e* and the Cauchy convergence criterion.

Theorem 3

For each j, the maximum value on IO,RO] for the
error bound (Ej) on the approximation ¢j

occurs at r
0. FRurthermore, Ej(r) increases as r decreases.

This observation is proved from the positiveness of a,

B, and v.

The approximation§ ok(r) are most easily expressed in terms

of the following quantities:

- a(s) .
Il(r) ’Ix‘ ds [}

v
RO
r
- a(s)
I,00) = f =571,(s) ds;
RQ
(r) s ( 553—1' (s).d ;
La f v 21 53
Ry '
. . & a(s)
121207 =f w191,(8) ds ;
Ro '

r
, - B(s) .
2\ ) -f ——Tds N
Ro
o
212{ 2(s) ds 1
o
r
B(s) ,
2121(x) * ] - Il:“ .f-) Js &
. Ro

It should be clear how to define I( ) for any sequence of

1's and 2's with the 1's and 2's alternating.




Femarec:  since w(r), gi{rd, v » 0, and since r < Ro,

1 (I"}, I,,(!",), 1

L

121(r), Izlz(r), vee < 0,

iy,(r), IQI(P)’ I

12 (r), I

2121(r), - o0 > O L

1212

Theorem 4

The'approximation ¢k(r) as given by (10) has the

form
/ y ' Y -~y
k(r) N + %Il(r) + ... kaSk(L)v
@k(r) z = (1)
mk(r) | ﬂ + NIz(r) + ... + DkItk(r) N
where
N, k even | e
Ckz sA
M. k odd
N, k odd
Dk = _ H ;
M., k even

121 .-Ao 121 l}( Odd
s, = { k-integers 3
121 ... 212 k even

212 ... 212 k odd
t, =~ k-integers .
{212 ... 121 k even

]

-y

The proat of this transformation is-by straightforward induction.

N
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Remark: The first several approximations are given below
explicitly. The alternating nature of the approximations

is emphasized by introducing the absolute value of the inte-

grals:

ny(r) = N - M |;l(r)|

my(r) =M - N |I,(r)|

ny(r) = N =M [I(r)| + N |I,,(r)] S
myr) =M = N [I, ()] +M |1, ()] ’
ng(r) = N - M |I, ()| + N |I, (2)| - Mo|T),, )]
Mr) =M - N |I,(r)] +M |121(?)| -ﬂNLII' (r)]

212

A restatement of theorem 2 in these terms is as follaws:

Theorem § . ‘ . _ }
The solutions n(r)-and m(r) to (1) and (2) have the
alternating series representation:

(r) + NI () + ...

n(r) = N + MIi(r) + NIlz(r) + M1121 1212
* (15)
m(r) =M + NIz(r) + MIZl(r) + NIzlz(r) + M1212l(r) e

Further theorems which may be obtained by straightfovwérd

manipulaticn include:




8 R \
it f° als) oy and f° PLS—"——ds <1,
r v

then for r fixed but arbitrary, 0 < r < Ro ’

|Il(r)| > |112(r)| > |I121(n)| > |1 121“(r)| >

(r)| > (r3} > ....

|T,(r) ] > |I,,(e)] >

1212 Inn

(2) Theorem 7

Suppose f° —(-Sl ds < 1 and f°§(%)ds< 1.
0
If M = N, then any of the following conditions guarantees
that n{(r) vanishes on [O,Ro):

(a) 1+ I (0) + I.,(0

IA

12 03

+

(b) 1+ I,€0) + T,,€0) + I,,0€0) ¢ I,,,,(0) <0 ;

(c) 1L+ 11(0) + 112(0) + 1121(0) M 11212(0) + I121?1(0)

+ I (0)5_00

121212

Remark: The abuve conditions (a), (b), (c) get successive-
1y weaker, i.e., (a) implies (b) but (b) does not neces-
sarily imply (a), etc. '
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(3} Theorer 8

Lex A, 0 < A <« 1, be specified, and le% ry 0or < B,

be given. If the parameters g(r) g(r), N, M, v are chos-
en in such a2 way that

nj(rl) = Amj(rl) > (18)

then

|n(r1) - Am(rl)l < Ej(rl) ’

where Ej(r) is given by (13) and (n(r), m(r)) is the so-
lution to (1) and (2),.

(4) Theorem 9
Let A > 0 be given and fix rc[O,ROJ. Then n(r)
= am(r) if, and only if,

N 1 - l. a(g)le + .1_ 2 (s '-s(e 23 ds
v RN - R L AS TP S
RO (]

o

A 3 2 »
- :!.[r[ [’ s(sa)u(az)atnl)dsldszds3
7o o o
1 f (32, o |
¢ i v g c(s“)e(as)a_(sz)s(sl)dsl-dszdssdsu'
' o o ‘o "o SR - .

’ LI 4

i




T D

A Kot

.
J B(Sz)a(sl)dslds?
O

S
s
.I u(sB)B(sz)a(sl)dsldszds3
R
o

r )
' 1 A
=M A= '\7[ O.(S) as + '—QJ
Vv
O o}

.

)
3 2
/ B(su)a(s3)8(82)0‘(31)d51d82d53dsu
R

R R T
o ‘o

For the remainder of this section we shall consider the
linea» ~*tvition-rate functions given by (3) and (4) such that
R, < RB . To simplify the approximations, we shall later

set Ro = Rq .

In order to simplify the calculations, perform. the
transformation

> = - .
Pe¥rran,

Under this transformation eQuation 105'which-recursivglv:definés__i,,

‘the approximations, assumes the form

g () /N /% 0 KK ~s3/v\ /n,
\n, /7 \M/ o K»s‘gs’s”" s

s &

gonanrr s




¥

where -R_ < ¥ < G, & =R -R, K =K =R The ap-

0o~ = "1 "q a o g T g T Fo v HRE AP
- proximations n (r), n, (r),,..,n (r) are given explicitlv in
Appendix C, 4,1. They are obtained from Iy (r) by replac1ng Y with
T - R . It is easily seen that Ty (r) is obtained from nk(r)
v

i by replac1ng in Ny (r), N withM, M with N, R with R6 RB
E» with R ) K with KB’ KB with K
€ From theorem 2, we have two theorems:

Theorem 10
-Let the parameters Ra’ RB’ Ka’ etc., be such that

any one of tha following conditions is satisfied. Then
n(r) must vanish on [O,ROJ.

-

F

nl(O) + El(O) <0,

n,(0) + Ex(0) < 0, (17)

. Theorem 11 ,
_ Let th‘ parameters R ’ RB’ K » etc., be chosen 50
-~ that any one of the following conditions is setzsfieé. .
Than n(r) cannot vanish on [0,R] . | |

Iy T —— o it it
FSTTIRY TENEMETS RS I Jae) . B s 4
- Makiarhy i T u PR

rl(O) - }:1(0> >0,

ny(0) = E(0) 2 0, oas

| “3(9)," Ey(0) > 0,




where

E, (r)
k (19)

1
~—~
=

+
-

[
-~
[0
<
U
=

~~~
o
~
§
?o[
1]
| SRR

and

K{(r)

"
l\)'f-—‘
~~
3
O

]
>
A

——

=
~~
N
je.o)

i
=

]
=
N

+
=
Py
N
)

B "B

- r - R ]
C

The functions nk(r) are found in Appendix C, Y, 1.

The equations that follow give conditions under which

for specified X > 0,

n2(0) =z sz(O) ’
nu(O) z Amu(O) s |
1
. l
b

“5(0) z ka(O) ’

_ , o A " _
in the case R = R_ (which implies that R, = 0 and R, = RS~5‘
- R ). - These condltxons are given below.- They are cbtained:
by equating nk(r) with Xm (r), setting r = 0, and rea"ranginb

R *erms.

gondition A: mg(0) = Am (0),  (Rg = R
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Condition B:
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Theorer 18
Let ) satisfy 0 < A < 1. If the parameters Ko’
KB’ Ra? RB’ v, N, M are such that

fa) Conditicn A holds, then

In€C) - Am(0)| < E,(0)
(b) Condition B holds, fhen
o In(O) - xm(0)| < Eu(O) ;
- (e) Condition C holds, thern

Inco) - x_mco)] < Eg(0) ,

S whorc Ej il defincd from (19). 3

o A reatatameﬂt of thcorem 9 givos .

kS rhcorcu 18 e . :
. Let A > 0 be givcn. and fix rc[ﬂ R ). “Then n(r)
,,H _= m(r) if. and only if, the parameters K R KB’ Ros Rgs
Y Ny M lro choscn so that th¢ foliowing hclds~
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I PR Syl oy RN I
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J-:J v J 1 C 0 o (RB szj_l)(Ra 523_2)

I B,
K o I
= M A+AZ___.§°‘K' 20 £2 0 N
3T 23 ) BgmspdR - s
i v 0 () -0

(R R |
8 52)(Ra *sl)dsl.. 'dsgj

. K]Kj -1 2] -1 52 " ‘
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; V k c e / ( 323-1)( 0 523_,,
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(RO - Sl)dslds?ootdszj_l .
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4.% Fower-Serive drproach

i

As chown in hapter 7, ccnsuderation ¢. cguatiens Lo
dv

dr

under a constant assault speed (& = 0) cun be comline

<5 fa-s

to produce the following second-order linear diifererricl

equaticn for n(r)

¢’n _ (10} on _ (am8m) ., ¢

subject to the initial conditicns n(Ro) = )\ and

aiR )
v° v, (22)

dn -
a;(Ro) =

where v is a positive constant and a(r) and (>) are nor-
negative functions on [0, Ro]' It is now useful to assume o2
alr), e(r)eC:L(O,Ro)]. This Cauchy problen was studied fzr t.e
linear attrition-rate functions given't  (?) and (¥).

| The specific cuze studied assumed R, = Fa < Ra,?“d B

Employing these attrition-rate functions, the Cauchy pr:-blem

- A8SUMas the form

2. KX (R = MR, - 1)
dn,(_x)dwgg.a e~ e o
¢ -) §2 - . : = )
J;! ’ lE»'. | ar N v7

p(Ro) s N |
L | K (¢ - R)
- dn e & c
a;(xc) : LoE O o v . ()
B P o T O L T T o T T I L TR A T RN T L0y S g




Dove that (23) has a sinpgularity at RO = Fa . A sclution
is tound it a reighborhood of r = Ra using the method of
frebenivs (Coddington, 1955). The solution obtained by

O Y Y o -
Caran e nou N&aT Tal lorm

' = N Y - + i -
nr) c1¢(1 Ra) Czq(r Ra) s

whore ¢, and ¢, are dJdetermined so that (24) holds.
1. ?

) b,(r = R )j+2
a ;L i o
1+ za-h*— R ).

The ccefficients bj are given by

The functions

<>
—
-
1
——
-
Nt
1"

and

y(r - Ra)

(

25)
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Lo FO) =2 -,

while the coefficients as are given by

dg.
F— hY
E aj dx‘d‘(OI L)
f
t where
& . g, =05 g, = G 8340) = KA/f(h + 3);
K. A
S S
8, () = Ty s
| . K. d, . K.d.
& - 2 . } ]—‘4 LR
gj(x) - f(x + _‘) [ -l - 5,6,7,-.-0

Note that a power-series exransion can be obtained for m(r)
following the same procedure. The chief difference is that

the erpansicn will be around RB rather than Ru .

The Cauchy problem noted above can be converted to a

useful dimensicnless form by letting

y =.n/N . _ g - (26)

x = m/M R (2%)
. ,

Y= (R“-r) I K Ka/v (28)

k.o
L]

R, »-(RB_ - Ra)_.J.-K“xB/v’ SN A2

»

% . . ey . R
.




R

b ettt e st it

Then

1drdn
N dY dr

z - %JKGIKB YX

PYR

-
-

by letting ¢ = M/R;/N/KE .

»
:%‘[" v /K'.!KB]{- C‘KE"(R" - r)g] -

B % 1) -

g~

i
R

Lravtvr .. « .
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-1
¥

(Ry + V) y . (31)

Thus, the sélution to equations 1 and 2 with a constant assault
speed and linear attrition-rate functions cén be cttaired from
the solution of (30) and (31) with initial conditions that, at
Y =0 (r = Ré = Ra)’ Xx = 1and v = 1. The Cauchy problem is
obtained directly from (30) and (31). From (30)

-%Tg¥=)t9

| which, when substituted in (31), becomes

1l dy

d[y a¥]a(R + Y

& TRty
Differentiéting again,

+§¥( .

2

o

v ) - Ry vy

(2 9
<

)

or

.
N

-iF-vR oty G

[=9
<
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which is readily solved by the method of Trobenius descriled

? at the beginning of this section.
] We note that the dimensionless parameters Ry and ¢ ccn- i
| Plerely characterize the solution and can be used to show the 3
E trade-of f among relevant parameters. If we ascume that N, !
i - G
E RB’ and KB are given and fixed, and if the solution is to remain i -
[ : p — ;ﬁm“¢;~wj;;;
E unchanged (i,e., Ry, and ¢ are fixed,, we musT -pave — - = ~— ’ A
[ co
‘ VK. M = /K, N ¢
a B )

' :

and - - ;'1

. R : §

‘ ) . \ | |

’ Rg = Ry ¥ JY"(";) ) o
a \YK

Thus we see how M, v, Ka’ and Ra can be traded off to obtain ’g;»f

a specific final result. | o j

4.3 Comparteon Techniques i‘
‘ | One method of obtaining information about the solutions

n(r) and m(r) to (1) and (2) is to use’comparison-téchhiques.. ' ﬁ-~ 35 «
] Tc see the principle involved.'consider'the'equafians_' 1- S _:lj é£ ;
42 : . , ERRRREII
x * R(rdw = 0 , (33)
dr- ' DR S
. §¥ ’é
; | ? : A RS .
s 17 | , ke
Jdrt » : o N
. S RS
S S
. ’v»;..vi
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g

%

The following theorem relates solutions of (33) and (34):

Theorem 14

Suppose w(r) is a solution to (33) and z(r) is a
solution to (34) which satisfy w(Ro) < z(RO) and w'(Ro) ;
> z'(Ro). If R{») > Q(r) on [O,ROJ, then z(r) > w(r), : :

oo GE PR e

U LT ) i i st RS EOTINA ;flﬂmm@ﬁwﬁ

. so long as both functions are positive. ;
' : r
3 B e i
[ L . e e . E
g' In order to apply this theorem first note that the second- i
1! : i
) order differential equation 21 can be written in the form
i a’n + a,(r) dB 4 4 (r)n = 0 (35)
1 -5 T =0
% ar 1 dr o
‘ where 2
i | -1 da
®=TF®
s _ . =alr)g(r) 3
} a(r) = —--:g—— . (26)
l éﬁ; S R , |
& - Perform the transformation
3 . - . . . .
“ ‘ f ‘,r a, (s) | :
S 37
o w(r) z n(r) exp ——3- ds | (37)
i S : ,Ro R _

il
- -+

z‘l

to put (35) 1nto the form (33). i.e., equation 35 assumes

the form

+ R(r)w s 0 3

aw
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where

[al(r)]2 3 dal(r) '
R(r) tazo(r) - i -3 T . (38) E

From (37) it follows that n(r) vanishes if, and only if,

w(r) vanishes. 7Thus., to determine where n(r) vanishes, it

suffices to determine where w(r) vanishes. But from theorem

1% it is seen that if z(r) is a known function which vanishes

on [O,Rol and satisfies (34) for some function Q(r). Then, a
sufficient condition for n(r) to vanish is given by Q(r) < R(r),

where R(r) is given by (38). It is desirable to make the differ-

ence R(r) -~ Q(r) as small as possible, for doing this reduces

the quantity zér) - w(r) thus giving better control on the zeros -
of n(r). It turned out in prnctlce to be difficult to find :
meaningful conditions using this approach.

- Another comparison,approach ufilizes-the ratib;
~p€r) = nir)/m(r) ,

which from (1) and (2) saticPies the Rizcati equation

2 -'l.% R R I

s for cornstant assault speed v._ | s
Note that if a known function h(r) satilf1es h(O) =0 s .5“

o h‘so) : N/M, "

“»‘ | . "

U(F ) < p'(R ) --[u(R )- B(k )?l

The reador 19 cautioned fhat this ritio is the rvcirxoenl or
that used in Chapt.% 3.0 s

[l 2
et

= e 381,
e T
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-y AR

then a sufficient condition for n(r) to vanish is “hat p(r)

< h{r), D <r< R, . This approach was carried out 1or

and yielded the following result for linear attrition-rate ]

funetions a(r) = Ka(Ra - »), B(r) = KB(RB - r). 1

e ows e GEE O oD

Theorem 15
2
Let Ro <3 RB’ and let

s e oy T— Sy o

..-
¥

©
~
=
~

Then n{r) vanishes.

it e o &

4.4 Method of Quasi-Lineariagtion
A# mentioned above, the function P(r) = n(r)/m(r) satisfies ‘
the Riccati equation 39. A solution to (39) is desired _ 1
which satisfies the in;tinl conditions . n(R ) = N/M., The
mcthod of quani~1£ne¢rization obtains a closcd-form solution o
| by "linegrisin; tho 92 tern. i.@cy by replacing n? w;th R '_1

PP e

The following th«oran ;ivno a represontation for p(r)

n(r)/n(r) in the case a(r) and l(r) are both linear.-

rhcorcu 1‘ R . c a : - : ;
. Let: u(r) n Ky cn - n) .ad S(vi = K’(Ra - r)., Thcn

R

‘ﬁlj i‘ﬂ"iﬁi‘ ﬁddv.h§4< h-ﬁ Gt it by B

[}
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_(30), it is des:rable to have a sequence of approximations.
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the initial value problem (39) for r « RO has the soluticn

R
c
plr) = ’3?;() [g exp ‘f 2u(£)d£§
o

- fo v u’(s) + -TK"KB (R - )¢ | Lo
KB(I“B - S) S v a -8 RB - s)
r -

S .
. exp’ f 2u(£)d£$ ds]. : (40)
) _

Corollary
A neceesary condition for n to vanish on [0, R, ] is

N 'K'[ Q( R].
ﬁi'\}—q Ro'u-'fg

V In order to obtaln 1nformat10n abaut p(r) as given by

Tﬁcorem 17 : o
Let p(r) be the solutibn to (39)..”p¢t

h (r) ES éi—-‘“

e cnd d,fin, hn’ n > 1, recursively by

e s
e

aa»;,u;?"ﬂrx;ﬁn:*;F‘“’5”5599‘r? -

P

’
B e T . . i P M v PR e
| S . Ceerw G N o [

’,,-A’




where
p(r) = - g%é§l
q(r) = - Qﬁzlgﬁzl
v
Let

pn(r) = ET%T hn(r) .
Tren for 0 < r < R,
pl(r) < p2(r) < .;. < plr)
and

lim
3% g )

pn(r) = p(r) ,

where the cenvergence is uniform.

-4.6 Bvaluation of the Different Approaches

In this section thg,diffefent approaches outlined above are
discussed to indicate their respective advantages and dirs-

advantages. By far the most valuable apprcach to the homocenecus-

'fdréebmodel utilizes the-method of successive approximations.

 Except for certain:special cases, a(r) and 8(r) will be such tha:

a:series'soiuticn to (1) and (2) is readily obtainable. The

‘ metﬁbd of successive approximations yields a series which ha:

thé‘adyéntage‘that each additional term is easily derived from

 the preceding one. The series is such that consecutive terms

h@Vg}litbrhaiing-sigﬁé. Further, there is no need to assume
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anything about 4(r) and g(r) other than continuity. In fact,
as is seen from examining the technique described in Section
4.1, it 1s not.necessary to assume that v ié a constant, 5.9.,
it is possible to supnose only that v is a non-negative coniinuous
funct%on.

't

The approximations to n(r) and m(r) are obtained by
considering tHe”partial sums. Thesé functions are made es-
pec1a11y valuable bacause of the existence of the error bound
E-(P); Uqlng the error bounds and the approx1mat10ns, it is
pOSalble to derive condltlons under whlch, for »r 6[0 R, 1,

n\nl) E Am(r Jy A > 0,\w;th a known ‘error bound. Also, condi-

tlons are ava1lab1e whlch gUaranteP that nf v) vanishes.

..—('

< e .
These" dltlons can be made as- weak as de51red i.e., given

any £ >0,\a conthaon can be f0¢nd whlch guarantees that

L

n(r) > 0'on [e"RO] but n(OY < Q.

not only treafs general a(r) and B(r) but also can be used tu

study the var1ab1e coeff1c1ent'heterogeneous-force mndela.

: Thisgi- because the approahh can handle- any equatlﬂn of the

form ~

]

AV FaN
Hlé
[1]
’
>
~
©

\ f " : . (D(i‘) -




and A is @ continuces o X n matrix. An error hound is avaiic! -
in this case and isg similar in form te that for the homose:r. .

case.
Finally, the approximations are such that they can le ean-
ily programmed. When a(r) and B(r) are beth linear, there is an

algorithm suitable foir computer use, which can calculate the
th .
n term 1n the series firom the (n-1) term.

Several charts are given in Appendix C, 4, I which aive

idea of the accuracy of the varicus approximations for Jifferer:
values of the parameters when a(r) = Ka(Ra - r) and g(r) =

KB(RB - r). Using the analog-derived solutions presented

in the next chapter, it is seen that interesting ltehavicr ol

the solution (n(r),‘m(r)) is encountered for those values of

the parameters for which (hs(r), ms(r)) gives a '""good" approxi-
mation to the solution. Thus the analog solutions can be used
to see what values nf the parameters are needed to induce
significant changes in the behavior of the solution (n(r). m(xY).

Then, using the charts found in Appendix C, U, o, it

L N
TOSS LTl

bae
th

to fird how many approximatiohs are needed to get an erreor PounIt e
that is sufficiently small.

The most elementary method considered, the power-sgries
tecnnique of Frobenius, is fine from a theofetiéal point of view
in that it gives a solution défingd fofiaii r. ‘waévep,\ﬁ good
error bound for the approximafiQns'?ofn(f§vobtaihed'b§‘§5nSidér-
ing the partial sums is not_n¢wfaV§iléb1e,‘and;ang ap§1i¢atioﬁ

using the power-series solution would have to work with zhe



partial sums.. Computer tests for the rapidity of convergence

arekdf no use, for it is easy to construct examples of power

aerleq that seem to converbe Papldly fer the first n terms only

to“qlverge eventually A more SGPlOUS drawback to this approeach ;‘g
i
i

G 1 esrln the fact that the power series for m(r) is taken alout
”hlle that for n(r) is taken about Ka' If Ry # R;, then it

1ff10u1t to Lomnare ner) and m(r) to obhtain conditicns un-

der whlch'tbey are equal, etc.('xlnallv, the solution (25) f:
"*cannot be easlly modified to accommodate other than line.r
Qwa a(p) and alr).

5! R " 9

The\compar on techninues developed in Section 4.3 have the

'notentlal of belng qulte useful. Using theorem 14, it is

P samhle,‘lnjtheory at least, to find functions u; (r) and Ql(r)

g 4 . b " . - :

O
11(r) < n(r) < ul(r)
4y “t ’ - : V .
ions u,(r) and ,(r) such that
2,(r) < m(r) < u.(r) . ?'
-2 - - T2 .
r,he'quantities ul(r) - tl(r) and u,(r) - RQ(P) are"small," ther
a verv goo idea of the behavior of n(r) and m(r) is availa!le. ;
The ul»flCh-t&, of ccurse, is to determine the functions &
'%ﬁgr)’ l(v), u«(v). Finding them is not easv, for a 1
relaticnshiy of the Farm R(r) > Q(r) mist held on [0, 51, =
SRR : ) o B
slanifcaios A7 Y and Q is siven in [8.3]. 5 e 2 E3
aloy el sUr) finding the comparison functici. wu. (). K
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etc., might not be too difficult. Otherwise, considerable
ingenuity is apparently required to find "good" bounds u](r),
uz(r), ete,

It will be recalled that the second comparison teczhnique
described in [4.3] utilized the ratio P(r) = n(r)/m(r). By
werking with the "bounding" function

p(R )
h(r) = -ﬁ_—_ r ,
a rather strong condition was found which guarantees that n(r)
vanishes (theorem 15). In order to ob a.n weaker conditions,

functio.s of the form

| 1/n
_N{r
hn(P) s { (E_) y

(o]

n an infeger, were considered, but no results were obtained.
Considering other forms for h(r) also proved to be fruitless,

The method of quasi-linearization, considered the ratic
8(r) = n{r)/m(r). The-:eaéon_for examining this ratic is that
it provides good'infqrmation about the relative changes in

n(r) and mfr)'as'r decﬁgases from R, to 0. For example, if

o{r) increases as r deéreases from R° to 0, then Red (n) is

-"defeat1n~" Blue(m)' *That ié;'n'is decreasing less rapidly

than m. The advantagg of the method ef quas*—l1nearlzat10n is

that it glves a closed-form solut:on to the Rxccatl equatiorn

©39. The difficultv. of courae, is to find a: fun\tnon u(r) )

I
]

PR
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which maximizes (40), or at least find a u(r) which "comes
close" to attaining the maximum. One approach is to find a
sequencé of approximations to the expression given by (L40).
Theorem 17 gives such a sequence and one which is monctone

and uniformly convergent. However, the approximations become
rather involved and, hence, are not of too much use in practice.

Another way to find a maximizing u(r) is to use a variational
calculus appréach (see 3elfand and Fomin, 1963). However, -
this approach was not successful, chiefly because of the "there

exists" nature of the theorems in this approach.

4.6 Research Directione

By far the most promising approach to the homogsanecus
Lanchester problem utilizes the method of successive ap::ox-
imations. Thus,it is natural tc expect that further research
would involve this techniquc. One of the first things to consi-_
der is how to improve the error bound Ejﬁr{ in the case where a(r)
and 8(r) are both linear. This errer bound is valid for very

general a(r) and 8(r), and its'value-in the linear 'ase in ao

wav uses the J1near‘ty of the functions a(r) Aﬁd B(r) }1hu:,

it is natural to expect that a better error. bound exlsts.
Notice tha: the Joxnew xep'vuentatlon‘ (15) for the ‘OluiJOH
(n€r)y m()) are 2uch that the firnﬂ of yonsecutxve term* ale

ternate.  PVoa conditlion can rc found whlch guarantees tzwt 
[ T . ’ . ‘

CAdter tne RO tora o) the series representat:on, t "tax‘" of

Apatiins b

g

o vy

L W O P P

T RIS R D .
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n(r) becomes an aiternating series (i.e., consecutive terms

decrease in magnitude as well as have alternating signs), ﬁ
then the error in the partial sum nk(r) is nc more than the ab-
solute value of the last term (i.e., the (k + 2) term) of n, ...
Probably this is the best error bound that can be hoped for, and ¥
it is definitely worthwhile attempting to find conditicns which E,
force the "tailﬁ:fc vacome alternating. The difficulty is that ’ i‘
for certain interesting cases of g(r) and g(r), the tail mav not |
become an alternating series. In this case other error pcunds, ]
such as Ej(r), will have to be used.

Another research direction would be to find a(r) and g(r)
such that the series solution (15) turned out to be the series
representation of a known function. There is no guarantee that 5
there are "interesting" o(r) and 8(r) for which this is the
case, but for the more realistic a(r) and g(r) this should at
least be considered. This was attempted in the case where a(r)
and B(r) were both linear using the approximations ny(r), n:(r),

...,ns(r) found in Appendix C, 4, 1. The apprcach was to see i°
partial sums of known special functions (see Rainville, 19f0)
corresponded to the approximaticns ni(r).~ This initial investiya-
tion was not fruitful, but it probably would be worthwhile to

pursue the approach somewhat further.
Another aréa of’research that should be of great interest'
and value would be to study the solutions using thé a%prciimatiéns.

(n, (r), m (r)) in the case v is a positive function on [0,R_].
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From the form of the series solution (15) together with its
derivation it 1ls seen that it is not at all necessary for v to
be constant. Once this restriction is removed, it is possible
to investigate the problem: Given a(r) and B(r), as the combat
evolves how siiould v vary sc as to maximize the quantity

mk(r) - nk(r).

Finally the metnod of successive approximations can be
used té study the heterogeneous-force case with variable co-
efficients. To see the principle involved, let

¢1(r)
r)=f ....

n(r)

and let A(r) be a continuous n x n matrix. Then the system ot

differential equations

R:ame

can be examined using the methocd of successive approximat.cns

just as in the 2 x 2 case. If

then the solution ¢ (r) ¢nd the approximtijons ¢, (r) ave reletad

by

[ sonfle o
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. H

- where
- n ' -~ s
;. P - S [K(r)

- _ E;(r) = EM.(R )] exp K(r}-,i L

| R £ SR rr R

éﬁ Thus, as in the homogeneous case, a method is available to study ;5

o the variable covefficient, heterogeneous-force case in detail. ;5

' | ’
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Appendix C, 4, 1

SUCCESSIVE APPROXIMATIONS FOR LINEAR
ATTRITION-RATE TUNCTIONS

Donald Ballou

The approximations nl(?), n2Cr)....,n6(r) to the solution
n(r) of theorems 10 and 11 in fhe text are given below eiﬁli-
citly. It can be shown that ny anq;pk,l ag-ee th?ough te?ms
of order ir - Ro)k, 'Also,';k is & polynomial in (v - Ro),'with

(r - Ro)gk

being the highest order term. Recall that ;a
R, - R, and ;B = RB - R . In the a?plications we set R, :

R, to simplify the results, such as Conditions A, B; C. If
further approximations are desired, n,(r} ii-sﬂii{ned u#ing“
equation 10 and the function ns(r). As nontioncd in the text,
mk(r) is obttined fron n, () bv replacing M uith H. N with M,
R with RB’ RB with k v Ky with KS' and K' with L

The ap?ratihctton_ni{rlﬁ .
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3 »- ) 3
(»!’ - RO)-

The approzimation n,( r):

'K

Y K K.R R.N M

v KR M a pafB o e 2
na(r)_=N*-—¥—-(r-Ro)+’ 2v (r Ry)

KKRN l(KRN

B
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The approzimation ne(r):

v Ny
. K&RhM : SIKBRGRBN ﬁxM 2
ns(r) = N + T (r - Ro) + - 3y (r - Ro)

R .M N KK R N
+ _2;1L£§_ﬁ_ - _..ﬁ,__ .._iLiL. (r - Ro)3

! bv 6v“ 3v

r 3 n
K3K2R R k%%RER N k2k%R R2N

+|2ba b “‘E'E‘E' - .__2_2ﬁ§_

120v 30v 20v

, Lk 2 R M xzx ReM | 5
%“ + (r - R
120v e

_ )\ ' v
-k3%%r%R2 K3K2R3 M 31.K°K%R RN

J;**g~ﬁgg4§-' » + 2_%,0 8

80v" ) 120v' 20 °36v

" aontinued
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Vel ZRN 11k BOR N ]
- - K = --5 (I‘ - RO)
pYegegegy?  23ensgeryd |
-2°KJKIR, R RgM 1,-K3K2f<'M
. - _ B a ‘3
320 5oy 2Megeqegy
K3K§R§M K2K§N | 6
- .+ (r - R.)
5, .2 5 y o)
2°03%5¢%  27e3y
3 2 |
211-KK?’M 13. K xz.RM'l
+ e ,%_ﬂ.iL_g (r - R)°
2'403% 5.7y 2-3-5-7vJ

-1 3Ky ]
10
+ 'g-—a——g (r - )
3e v
- The qpprozimafion nsfﬂ)t
o : Ny
K R M KyKgRgRgN K M
2 3 a - L) Q- . 2
{r}) = N ¢ v (- R+ -~ - me—{(r - R.)
2 ‘\r?\' _ "
R SO A L U LTLE
6v3 6v2 ; .! o

continued
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2,275 742 2. % A 20 %2
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Appendix C, 4, 2

ACCURACY OF THE SUCCESSIVE APPROXIMATIONS APPROACH

Dorald Ballou

: h In order to obtain some idea of the accuracy of a given

approximation in the case a(r) = Ka(Ra - r) and Bg(r) =

KB(RB - r), the following sets of charts were developed.

Chart 1 gives the bound on the error in the quantity

6 InC0) - n (0] + |m(0) - m, (0)]
provided N + M = 100. That is, the number P.. in the ith row
and jth cclumn of Chart 1 is such that
|n€0) = n;(0)| + lm(0) - m, (0] < Fij
b whenever the parameters are such that

: ’ R
f . K(0) = 2 [K R+ K (2Rg - RDI < .5+ (5 - 1018

and N + M = 100, If N+ M = C, then

[n€0) = 0y (03] + Im(0) = my (O] < Py 5 -

Charts 2, 3, and 4 give K(0)+v for different values of the

parameters Ka’ KB"RQ’ RB' ?hus,‘if Ra =-2009 meters and RB
® and kg = 3 x 207°,
K(Q0jev = 32, which implies that K(0) < 2 if v > 16 . Hence,

3000 meters, then for Kq =10 x 10°

from Chart 1
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in,(0) - n(0)| + |m,(C) - mC€0)| < 239 3 "
Ing(0) - nC0)| + |m(0) - m(0)} < 12.2 ;

|ng(0) - nC0)| + |mg(0) - m(0)| < .1786 .

provided v > 16 and the parameters have the values given

them above.
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PReR
w o M

R s
_— _ , !
K(0) v = <5 [K R + K (2Rg - R)I. 2

2000 mezers, j;

Chart 2: Values of K(0).v if R, :
3000 meters,

Rg

2 x 1078 3x 1078 4 x10 5 x 10°

20 24 28 32

10 % 10” 28 32 36 40

12 x 10° 32 36 40 by 35

Chart 3: Values of K(0).v if Ry = 2500:meters, | -
RB z 4000 meters. .

| | PR
2x100%  3x10®  wx20®  sx20®

| 6 x10°% | 32.50 39.38 4.2 53.13

8 x107° | 38.75 45.63 52,80  59.38

T A e ’ P

45,00  51.88 58.75 85.65

12 % 107° 51,25 56.13 65.00  71.88

|
S
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Chart €: Values of K(0).v if Ra = 1000 meters,
RB 2 1500 meters.

Kg

2R A H IR TR AP

6 6

Ko 2 x 107 3x10°%  ux 107 5 x 10°

¥ 6 x 107° 5 6 9 g

8 x 10 S 7 8 9

e —
PR o

. 10 x 10~
/i . |
S 12 x 1078 8 .9 10 11
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ey e g e en L
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Chapter 5
VARIABLE ATTRITION RATES, ANALOG COMPUTER RESULTS

Vepnon Larrowe and Raymond Crabtree .

The previous chapter indicated the difficuities encountered
in attempting to get closed-form, énalytical solutions to the

coupled differential equations .

%% = -K (R, - rm (1)
g-’t‘l = -Kg(Rg - TIn , (2)

where dr/dt = v and

3
"

the number of surviving Blue units,
n = the number of surviving Red units,

the distance between the Red and Blue forces,

"
"

t = the elapsed time since the beginning of battle (t,)»

the speed (assumed constant) at uhieh the forces
" reduce the distance, r, between thcn,

<
o

Rys[Rg] = the range at which the Blue {Red) forees' weapons
o first achieve a nonzero attrition rate,
Ky 1[Kg ] = the sonstant rate of change of the Blue [Red] weapons

~attrition rate.
Equations 1 and 2 were prbgrtmmbd for solution on an anllog

computer to develop some understanding of the important parame-

ters and the underlyxng dynamica of this dcicvtption of a battle.,

The results of varying paramotcrl of th‘ modol such as

rﬂ,
. CeE
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KB’ Ry» RB’ R, (open-fire range) and the initial numbers of _ 3

forces, M and N, are presented in this chapter. In all cases,

T
s

except where noted or explicitly varied, Ro is set equal to
the larger of R,, RB' Sirice a fairly large number of curves o
were obtained, it was useful to arrange them in a logical order
to explore the behavior of‘the solutions. Accordingly, each
curve is given a four-digit "figure" number, with the dig’ts

separated by'periods.' The significance of each of the digits

is described telow.

The first digit indicates the basic type of data plotted:

First Digit Type of Data
1 | Solution of the equafions at
r =0 '
2 Starting conditions required at r =
R, for a specified outcome at r = 0.
The seccnd digit of the figure number indicates the ordinate :f
of the curves: : ; o _ o ’;5
‘Second Digit Ordinate
. ,»‘giﬁ_or ﬁ;N | - _é‘
2 mewer M-N)
3 g 'i/h orxH{N oy '_%
. B I SET M
The third digit of the figure number derotes the abscissa -1
' of the curves. | o | . | i
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Third Digit
-1
2
3.

9

o ?h@ﬂféﬁrfh”digit of the “igure number indicates the para-

»»,mnfhr_uhigh-ehpnges from one cutve to the next on the figure: 

oyrth Digit

2
-3 '_
4

?‘ t;jgz ‘ckﬁi <F;x <1Qx

= <
oS

g W =

| ‘,w‘ o

Abscissa

\'

=
[~

not used

ter

’g

4
2

r——

e o b b Bt o wle e
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In addition, some figure numbers have a letter as a suffix.
This lecter is used to differentiate between figures whose num-
bers would be identical otherwise, but in which some quantity
changes from one figure to the next or the scaling is different.
Thus, Figures 1,1.1.4A and 1.1.1.4B ave families of curves which
differ only in that in the former, the abscissa, v, goes to 80

meters/second, while in the latter, v only goes to 40 meters/ 3

secord,

bod wed  dmed eed oed G  OWR

As an example of the figure number coding, consider Fig-

ure 1.3.2.1. The meanings of the four digits, taken in order,

-

7 Digit Meaning :

- 1 This is a plot of conditions . i
ae &* r =0 g
7 3
3{ | 3 The ordinate is m(O)/n(O) , 5
?3 . - )  :‘3; ‘ 2, | The absei:oa is K B | , f;}

T

o 1 Each curve in this figure is for
e a different value of v.
L |
ﬁ - . The figurcs are containcd in Section $.3. A brief discussien cof |
5 gé | conc of thn intercsting reeults is g;von in the following two 3
“ i | toetions. | :

4 RO
;; S 16.1 Svtutiom at Range » = 0 - - ‘

}f A Figurc: 1 1.~.2 to 1 3.2, 1 show the solutions of the equatione

»if - lt r =0 for varioua ccnditions. Figuros ;.1.-.-show m(U) and
: it l.> ‘n(0). Pignrtl ¢2.- -show [3(0) - n(O)] z d and Figures 1. K PP

£ : o .
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show m(0)/n(0) = P Figures having the same ordinates were
grouped together to facilitate comparison.

Figure 1.1.1.2 shows curves of surviving forces [m(0) and
n(0)) at r = 0 as a function of closing speed, v. For this

situation,»Ra < R., but KQ > K_ so that the lines g(r) and 8(r)

8 b
cross a4t some value of r between Ra and ¢, For Figure 1.1.1.2,
both M and N (the initial values of m and n) arc 100. The solid
curves are for m and the dashed curves are for n. Each curve is
labeled according +0 the value of KB’ which was used in obtaining
that curve. Note that each dashed curve (n) has a minimum
value at some v. This v, of course, represents the closing speed
which gives'the fewest surviyiors of the Red force. The inter-

section of a dashed line for a given X, with the corresponding

B
solid line c~curs at a value of v, which results in a "parity"
condition (i.e., the surviving Blue forces are equal in number
to the surviving Red forces at r z 0). Sume of these inter-
section points are encircled on Figure 1.1.3.2.

- Figure 1.1.1.3 shows m(0) and n(0) versus v with Ra as the

parameter which varies from one curve to the next. Tre curves in

this figure for Ru = 2000 meters are identicil with those for

.KB : 5 x 10”8 in Figure 1.1.1.2. Increasing R, increases the Ped
losses and decréasgs Blue losses. The curves are somewhat sim-
-ilar tc those of Fig&re 1.1.1.2.

figupe-l.lil.kA is another set of curves of m(0) and n(0)

»*versus v, but here, N, the initial valiue of n, is the parameter

which is varied from one pair of curves to the next. The arrav of




curves is similar in appearance to Figures 1.1.1.2 and 1l.1.1.3.

Figure 1.1.1.4B is an enlarged version of the left half of
Figure 1.1.1.4A. Tﬁe closing-speed rangs is from 0-40 meters/sec-
ond instead of from 0-80 meters/secend.

‘Figure 1.2.1.2 shows the force difference, m - n, at v =
0 as a.funetion of'cldsine;speed. KB,iS the parameter which i=n
varied from curve to curve.: All'conditions a#e the vame for this

set of curves as for Flgure 1.1. 1.2. The only differences are

the reductlon of the range of v frem 80 meters/second to 40 meters/

_second, and plottlng of d as the ordlnatewlnstead of m(G) and n(0)},

Several features of Flgure 1>2 l 2 are of interest:
The curves for KB = 2 x"lo.sjand~fqr KB =3 x 10 -6 cross the
line for d? = 0. The value of v at whlch these crossings
occur. represeni »aluee at whlch parlty occurs [1 e., m(0) =
n(0)1. ‘Note that partlcularlv for KB 2 x 107 ; the slope

of this curve where 1t 1ntercepts the v-axxs is 1n‘1n1te,

thua indicating that a very alzgh ncrease or decreaqo of v

from- 5 meters/second can. substantlal‘yi FFec*r* e outcome of
theiengagement. The.outcomeaat v-# 5 meters/second tor
Ksié 2 x 1078 is xndetermlnate.

Each of the curves in this flgure (1.2.1. 2) haQ & cusp or

discontlnu;ty below the v axis. Reference to Flgure 1,1.1.2

shows that these discontinuities occur at .values of v for which

m(0) = 0. In other words, for values of v Up to the cusyp in

each curve, m is wiped out completely. TFor values of v yreater

”‘: ‘—‘“i"‘ﬂ‘..,,:-_:‘f-‘ Tl A Fa i .T .

ol
ik

Frh opind
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than that for the cusp, there is some surviving m. The cusp

above the v-axis on the curve for Kg = 2 x 10"% occurs where the
Ked side, n, is completely eliminated. This curve is very
sensitive to v. For v < § meters/sécond, Blue is eliminated,

and for v = 14 meters/second, Red is eliminated. As v increases,
each curve approaches m(08) - n(0) = 0. At infinite speed (V ™ %),
neither side would suffer any losses and the outcome would be
m(0) - n{0) = 0.

Figure 1.2.1.3 is a set of curves for m(0) - n(C) versus v,
with R, as the parameter which varies from curve to curve. Here,
as in the previous figure, the value of v at which each curve
crosses the v-axis represents a parity condition and again some
of the curves, particularly those for the higher Ra's, show
very high slopes where they cross the v-axis, thus indicating
great sensitivity to v at these pcints. These curves also
‘have cusps ox discontinuities. Cusps below the v-axis indicate
conditions where m(0) = 0, while those above the v-axis occur
for conditions where n(0) = 0.

Figure 1.2.1.4 is a set of curves with abscissae and or-
dinates the same as for the two preéeding figures, but with N,

“the initial value of n, as the parameter. The v-axis crossings
and cusps for these curves have the same significance as these
features have in Figures.1.2.1.2 and 1.2.1.3. Note that the

curves appear quite similar to those of ['igure 1.2.1.3. This




S e e e 303

indicates that decreasing N has an effect very similar to that of

increasing Ra .

Figure 1.2.2.1 is another presentation of the information
shown in Figure 1.2.1.2. The abscissa and parameter have heen
interchanged, so that now, v is the parameter and K8 ic the olb-
scissa. The curves of Figure 1.2.2.1 sh>w an almost lincar
relationship between m(0) - n(0) and KB, except for the curve
for v = 10, which has discontinuities. In Figure 1.2.1.2, the
vertical line for v = 10 passes through the region of discon-
tinuities for the curves of constant Kg, so it is to be ex-
pected that the transformation c¢f this line to the n(%) - m(0),

KB coordinate system of Figure 1.2.2.1 would show discontinuities.

Figures 1.3.1.2, 1.3.1.3 and 1.3.1.4A and B are curves
showing the finai force ratio, Po = %%%% , 45 a function of v.
The parameter which is varied from curvs to curve for [Figurde 1.23.1,
is KB’ that for Fi~ure 1.3.1.3 is Ra’ and that for Pigures 1,3,1.:4°
and B is N, Figure 1.3.1.4B is similar to Figure 1.3.1.4A
except that the v-axis has been extended to 80 meters/seccond.

For these figures which show P, as the ordinate, the poin:
wherec a curve crosses the line Py = 1 represents the parity
condition. Any peint above this line indicates a superiority
of forces for the blue side, m, and any point below <his line
represents superiority of forces for red. These families of

curves are very similar in appearance, regardiess of whether KB'

Ro, or N is the parameter.
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Figure 1.3.2.1 shows p  as a function of KB with v as a para-

meter. It is similar to Figure 1.2.2.1, with P, a8 the ordinate

instead of m(0) - n{(0). The curve for v = 10, which is discon~ -
tinuous in Figure 1.2.2.1, is not reproduced in Figure 1.3.2.1;
however, the curve for v = 20 in Figure 1.2.2.1 is almost linear

in this figure, and shows definite curvature in Figure 1.3.2.1.

5.0 Irnitial Conditiona to Achieve a Specific Outcome
The 2.-.-.~ series of curves show various sets of initial
conditinns and parameters required to give m(0) = n(0) = 10
at r = 0. This is a specific parity condition, where m(0) -
n(0) = 0 and m(0)/n(0) = 1.
Data for these curves were obtained by setting conditions
on the integrators of the analog computer circuit for the desired
outcome cf the engagement [m(0) = n(0) = 10] and operating
the circuit backwards (in negative time) until R, = 3000 meters.
Figure 2.1.1.3 shows the required values of M and N, as
functions of v, which will lead to an outcome of m(0) = n(Q)
= 10. The parameter, Ra’ goes from 2000 to 3000 meters. The
dashed curve labeled "2" is N versus v for an Rc of 2000 meters.
The Jdashed curve labeled "3" iz N versus v for an Ru of 2000
meters. The Jashed curves between these two are for interme-
di;te values of R“ at intervals of 200 meters. The curve for =00

merers was omitted, s=ince it would have fallen on the M curves.
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The solid curves in this figure are for M versus v and there
is a curve for each Ra from 2000 meters to 3000 meters at 200-

meter intervals. They occur in the same order as the N curves.

The one giving the lowest M for a particular v is for Ra =
2000 meters, while the one giving the highest M for this v is
for Ry, = 3005 meters. In this figure, it appears that for some
Ra between 2200 and 2400 meters the N versus v curve could
almost coincide with the correspending M versus v curve. If
this were true the implication would be that for this Ra’ the
values of M and N would always be equal, regardless of v, if the
outcome were to be m(0) = n(0) = 10, |
Figure 2,1.1.5 is a plot of starting conditions, as a
function of v, to give m(0) = n(0) = 10 at the outcome, with
varied so that Ka/v and K,/v remained constant for the

B B
various values of v. This figure shows that under these condi-

K and K
a

tions, M and N are independent of v.
The validity of this conclusion may be shown analyticallv.

In a straightforward manner (1) and (2) can be transtormed to

dn Ka
= 2 - )
F° 3 (R“ rm (.
and
v K
Eefr crm . | (4)

If v is constant, then Ku/v and KB/v will also be constant,

If v is changed, hut Ka and KB are readjusted tc make Ky/v
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and KB/v remain unchanged, equations 3 and 4 are unchanged. The

outcome for given values of M and N will then be independent

“ ofvv, although changing v will change the rate at which the
solution is generated in the analog computer circuit.

Figure 2.1.3.1 shows the same data as thet plotted in Fig-
ure 2.1.1.3, but this time R, is the abscissa and v is the par-
ameter. The intersection between each solid line (M) and the
corresponding dashed line (N) for a given v represents the ini-
tial values and value of R,, for equal numbers of m and n at the
beginning of the engagement, as well as equal numbers at the end.
These points do not fall along a line of constant Ra as was
implied by Figure 2.1.1.3.

Figures 2,1.5.6A through 2.1.5.6I, inclusive, are plots
of M and N versus ¥ /v, with Kﬂlv as the parameter. The initial
conditions defined by the curves will result in an outcome of
m(0) = n(0) = 10. For Figures 2.1.5.6A through 2.1.5.6D, Ra is
at 1500 meters and RB is at 3000 méters, but Ro is varied from
figure to figure.” Values of Ro for thesa four figures are 2000
meter:, 2250 meters, 1500 meters, ard 750 meters, respective-
'v. Altncugh these four figures contain considerable inrorma-
tien, it is difficult to draw'any general conclusions from ex-
amining tlem. Lt appears that. for smaller values of Ré. the
viatues o1 M and N oaceded toe produce an outcome of m{(0) = n(O)

1o 4t rotaved, ar would be expected. One way of interpreting

the data i: *he:e fouy figures is to regard each of them as

® -




-

a picture of the situation at one of four successive values ol

R, Thus, Figure 2.1.5.6A gives the values of M and N needed

at Ro = 3000 meters if the outcome at r = 0 is to be m(0) =
n(0) = 10. 1If Ka’ KB and v remain constant, r, the distance
between the forces, b;comes smaller at a steady rate. When it
reaches 2250 meters, the values of & and n at this point mav be

found by referring to Figure 2.1.5.6B and reading off the M

£
i
%‘:
¢
b
i
£

and N for the assumed constant valuec of Ka’ KB’ and v. Figure

2.1.5.6C gives the "picture" when!&)has diminished to 1500

pmes

1

Pt

meters, and Figure 2.1.5.6D gives the information when Ro=

e

750 meters. It is apparent that as R, approaches 0, the liney of
M &nd N versus Ka/v will become more horizontal and will eventu-
ally coincide with the line, M = N = 10.

For Figures 2.1.5.6E through 2.1.5.6I, R, is at 300C meters,

g
but Ra has been increased to %RB or 2250 meters. This increase

e TN P T R AT e Y ot
bt bt b gl et et Gmd D BED O e

in range of the Blue forces' weapon would be expected to raise

S ——
i

the initial strength of the Red forces and possibly reduce the

¢

initial strength of the Blue force over those for figures

S 2.1.5.6A to 2.1.5.6D, where R, was only one half of Rg.

- » Comparison of Figures 2.1.5.6A and 2,1.5.6E shows that for

, 1, 3. .
any giaep Ku/v and KB/V’ the change of Ro from ?Rg,tQ FRs dees
increase the required N at R, = 3000 meters, but it also increas-

es the required M. This required increase in M is somewhat

e

_unexpected, and should be investigated rurther.

.

™
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Figures 2,1.7.8A, 2.1,7.8B, and 2.1.7.8C are plots of ‘M and N
v:::g:j{RdEﬁ/v wffh Ka/KB as the parametef. Agaén, these values
of M and N are for an outcome of m(0) = n(0) = 10. Specification
of a value of /R;Ré/v and a value for Ka/KB ie equivalent tc

specifving Ka/V and K,/v. Thus, if1

i‘v B
/KX | |
._%_ﬁ = x (5)
and
K
f& =y (8)
B
' then
]
K K
o B 2
—= = X (7)
'}» ’
E and (6) and (7) mav be solved for Ku/V and»KB/v to giye
hj | - K o
E .
3
5 and
. K . ) .
.‘_.\;-B-:Z-‘— X,y > 0, {9)
vy

Since it was previcusly stown that M and N ramain'ccnstant-

when K /v and Kg/v are constant even though v is changed, the

1The reader is referrec to Section 4.2, vhere the value of the
dimensionless parametar R,, which is a function of x, is dis-

cussed.
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curves of Figures 2.1,7.8A, 2.1.7.8R, and 2.1.7.8C arve valid tor
all v > 0. |

An interesting featurs of these three figures is the lack
of crossings of the "M" lines with the "N" lines. It appears
that if M > N for any value of'/?;Rg/v, this relationship
holds true for all values of /R;KEVV. This is experimental data

only, and the validity should be investigated further, but the

noncrossing condition certainly appears to hold for Figures
2.1.7.8A, 2.1.7.8B, and 2.1.7.8C1where Ro varies from 3000
to 750 meters. |

Figure 2.2.1.3 shows curves of M - N, the difference in
initial forces, as a functionbof v, which will give an engage-
menv outcome of m(0) = n(0) = 10. The parameter is R . This
figure was plotted from the same data as that used for Figure
2.1.1.3, the difference deing that M - N instead of M and N is
the ofdinate. This figure shows fhat there is no value of Ra
such that M = N for all values of v, although the curve for R
= 2200 meters shows M = N for v > 50 meters/second.

Figﬁre 2.2.3.1 has the same abscissa and parameter as Figure
2.1.3;1, but fhe ordinate is M - N instead of M and N. The curves
fér v & &0 apd v = 80 are also for M - N; they were plotted in
dashed form to help identify:fham on each side of the intersec-
tions with other cuvvés.

Figures 2.2.5.6A through 2.2.5.6I are for the same abscissa,

parameters, and conditions.dn_Ru, RB’ and R, as Figures 1.1.5.6A

though 2.1.5,6I, respectively, but with ordinates of M - N
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instead of M and N. Again, these are plots cof initial conditions

which will lead to m(0) = n(0) = 10 at the end of the engagement. ;

-
These curves do not give complete information, as the actual ini- -
tial values of m and n must be given, rather than M - N, in .-
order to guarantee that the outcome will be m(0) = n(0) = 10. T

They were plotted to give an indication of how M - N behaves.
Points of interest are (1) the plots are almost straight lines,
and (2) points where M - N curves intersect the line M - N =

0 represent conditions where the Blue and Red forces start

with equal numbers and the engageﬁent terminates in a parity
conditiona Conditions where the curves go below the (M - N =
0)-axis represent conditions where the Red force is larger at the
beginning of the engagement.

Figures 2.2.7.8A through 2.2.7.8C are ploté of the initial
force difference, M - N versus /R;?EYV with Ku/KB as the par-
ameter. These curves are plots of the differences of the M and
N curves of Figures 2.1,7.8A through 2,1;7.8C, respectively,

They have the same general appearance as the M and h .urves,
thehselves; . t |

'figure 2.3.1.3 is a plot of M/N (for an outcome of m(0)

z n(O) >.10) versus v,bwith R, as fhe param.t'r. The abscissa
and parameter is tﬁe sahg fer this figure as for Figure 2,1.3.1; :’.;
ouiy the ordinate has been changed from M an2 N to M/N. The :
region below M/N = 1 representé conditions where the initial

strength of the Blue forces is less than that of the Red; and

i et o Sanliie b mkEe v




T T TEG KR AT S

O YA N St i b

A

av o AN e

-

w

-k

-

ea

-

[ ——

thus represents the condition of Blue defeating more of Red than

it loses, since at r = 0 the two forces are equal.

Figure 2.3.3.1 shows the same data as that of Figure
2.3.1.3, but with the abscissa and parameter interchanged.
This figure is interesting because it shows that the relation-
ship between Ra and M/N for a constant v is almost linear.

Figures 2.3.5,.6A through 2.3.5.8I show M/N versus K /v,
with KB/v as the parameter. These figures correspond to Fig-
ures 2,1.5.6A through 2.1,5.5I, respectively, with M/N as the or-
dinate instead of M and N,

Figures 2.3.7.8A through 2.3.7.8C correspond to Figures
2.1.7.8A through 2.1.7.8C, with M/N as the ordinate instead of

M and N. They use /RQKBIV as the abscissa and KG/K as the

8
parameter.

§.3 Figures Shoviﬁg Reaults of Parameirioc Variaticns
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Chapter 6
DYNAMICS OF A FIRE-SUPPORT ATTACK DOCTRINE

Seth Bonder and Ceorge Cooper

B R R e T S ——

Previous chdpters of tkis partfbf thq report‘oonsiﬁgged
homogeneocus-force battle models in whicixw(ra) the ratio of the
attrition rate functions e%—:—%) equals a constant and (b) the
ratio was not a constant. In the former case closed form solutions
E were developed; however, only analytic approximations and zralog
computer results were obtained when the ratio was not constant.

In this chapter we consider the situation in which

alr) = constant (1)

Gl e

such that % is not conatant dut the resultart equations do

) . yield to an amslytic solution. A Wtul. fire-support ;
; attack dootrine whioh DRessanes Ms property is ducribod : B .
" in the fonMu uctinm _ . : . j

and
: ' ]
- #Kr) = ‘0(‘0 -p) (2) . N
I
f

' 0.1 !'cctteci utuuan

~

[E g

. ' i
R A Red fmc tn) dnfuﬁn: a ﬁua pa-itien at r = 0, L
B 2. A Blue fmt (), w fire from the th force, mov- |
o irg tmrilotwa'ﬁhichthnutth begins) to
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r = RS at a constant speed (v) without returning fire
on the Red force.

3. At r = RS, p percent of the remaining Blue forc: (MS)
continuecs to advance &t speed v without firing. The
remaining (1 - PIM, Blue units stop and provide
supporting fire cn the Red force.

4., Rad fires only on the moving Blue units,

The attrition~-rate functions which result from this situation for
use in the differential model of combat are shcwn in Figure 2.
The Red force attrition rate varies with range since Red units
engage closing Blue units. The Blue attrition rate is a con-
stant, a_ = Km(Ru - Rs), since the supporting fire B3lue units

remain a fixed distance, R_, from the Red units.

6.2 Solution Procedure
Consider first the range interval R, < r < R,. The Red
forces do not suffer any losses in this region. The Blue loss

rate is

= -g(r)N (3)

5l&

:
since

gi{r) = Ks(Rev- r)

K o
dim =B (R, - PN . (4)

ar 8
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Letting u = R, - r, du = -dr,

B
K
dm = Vg- Nu du (5
and
2
K_Nu
m _é_. + C
2v
2
K_N(R, - r)
= g g + C
v

At r = Ro, n=N and m = M; therefore,

2
C=M-—§V(RB-RO)

and

K N
- 2 2 .
m-M+-§;[mB«r)-(RB-RO)). (6)
At ranger=Rs,
K N : ‘
-1 - -1- - 2_ - 2
m Ms’ M v [(RB Rs) (RB Ro)] (7)
Rg< v 2Ry,

Consider next the range interval 0 < r < Rs. Let
my = pMy = rumber in the Bluemoving force

M, = (1 - pM4, = number in the Blue fire-support force.
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Then,

since the fire-support “orce is not fired upon.

The Red force loss rate

I CVE M (8
where
a. = Ka(Ra - Rs)

S

is the Blue force attrition rate at r = Rs' From (8)

o M
ns-.2 2 r+ C (9)
v
and since n = Natr = Rss
a M
52 -
C = N+ - v ES .
Thus
o M B
neN+-2 (R -r) . (10)

The moving Blue force loss rate

dml dm.
"o c Vv 3?: = ~8(r)n

(R, -~ ™n . . - (11)

= -Kg(Rg
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Substituting (9) into (11),

dm ~K (R - 1) a M,
ot = ~i4 N+ 22 R -r)

-K.N(R, -~ r)

[
; £ - KIR (R, - 7) - Ry

"

r+r?l, Q)

where, if v is not a function ¢f range (i.e., a constant speed

assault), the constant
SM:K

K = f__7_§ :

v

Integrating (12,

K _N(R, -r)? [’ R (R,-r)? R p?

my = -ﬁ-_ig———— + Kl+ _E__%_.__ + _%_- - §EC]+ c . ]

Employing the initiel cendition that at r = Rs, m, = Ml = pMS,

2 2 2 3
c M ﬁN(R —Rs) i KRS(RB-RS) i KRBRS . KRS
1 v ] ) 3

O
b

and
KoN KR
- B 2 2 8 2 2
KRﬁ 2 2 ot 2Rs3
+ oy |Rgr’ - RgRT - Sy b o= | (1%
Adding and subtracting § (RB - Rs)3 and collecting similar terms,
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_ K 3 3
m, = Ml t [(RB - 1)’ - (RB - Rs) ]

K_N
2 2
+ £ [(RB - % - (Ry - R ] (14)
K(R, ~ R_)
8 2 2
- —-&T—[(RB - % - (Ry - RY) ]
0<r<R_,
where it is remembered that s
a MK K (R - R_IM,K
- .5 - 6 a 828
K = ?;ﬁ = — . (15)

v \'

6.3 Conditions on "y and n Approaching Zexo

We consider next the conditions such that m, and n approach
zero simultaneously. Let the range at which this occurs be

denoted by R®. Then, one has from (14)

| KM K(Rp - R_)
= K 0,3 3 g8 s

0,2 P4
[(-B'R) -(RB-RS)]

(186)

1"
[ =

and

n:N+-=L®R -R)=0. | (17)
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Letting 6 = gxﬁ » the range R® can be found from (17) to be
8 ‘
RO=M_4 R =9 +R_ (18)
a3ﬂ2 s s '
Letting I = RB - RS, and substituting (18) into (16), one has
XK. N
K 3 3 Kit
My + 3 (IR - (6 + RDI® - 1°) + [73— - 7—]
. 2 2, _
. {[R8 -~ (6 +RII" -1 =0
M, + 5 |-an% + ame2 - 63| + ;ﬁf - Xl -ome + 62| =0
13 : & - v 7 -
a MK
Since K = —réb = ,
v

| a2 KNSy
" - " + s 0 . (19)
1 !°8J2 663!3 .
‘Remembering that
Ml ? pMs
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M2=qu where g = 1 - p
K_N
- 2 2
Mg = M+ R [(Rg - RO® - (R - R

and letting

_ 2 2
y = (RB - RS - (RB - R,

(19) becomes

3 )
A M K iq M Kov
¢ 8 B 8 8 -
Pa F-T*w—*-s—?-o (20)
s
or
Kpllz Kov
3 7£___ _.37_7 , (21)
8§ bpqa
H KgY , .
To find the desired conditiuns, it i8

where z = N' W 7._

necessary to solve for the three roots of (21) denoted by Ty

r,, and r,. This is accomplished by applying Cordan's formulas.

Equation 21 is in the general fgbm x3 + pe? rox +d =0,

. v

_,23_! . Intermediate quan-
6pq a, ’

tities needed are s, t, and L., where:

where b'= By ¢ = - 5$§5~‘. and 4 =

. N
REEE SRR

-

(22)

¥

t=zd- gbc + évbs ~—-§w, (23)

épq o,

aidea

A gkl o
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. S 2?
L = g8 + + .
77 A " 216p qga 1uup§q”a:

(24)

It can be shown that equation 21 has three distinct real roots, a
single real root, or at least two eaual real roots according to
whether L is negative, positive, or zero, respectively. The latter
condition will be neglected for the moment. The condition that.
L be positive implies that

g.a < §PV2 v (25)
5% Ry - R;!(l -p)

The single real roct is given by

3 3
ry = A+ /B >

where

N Ay e g

RNy

Sy,




e

T o e vy

.5 T —"

12¥/3p pq g

K /3 /3
ry = [-—-_..._5..7_2]] l({spv? - 2Kan'§asq - Jap\w!)l

1/3
- (prvz - K E g {3;;7)- :’ . (26)

When L < 0, three real roots exist. Thesa are found by a

different procedure, which employs the following quantities:

R A ()

”

1 5 | ~
-2 v p :
cos 0 - z - i— m | (2.7)
/3 x»n. 1/2 '
[va) (!pqasg R

Using (27) and (28) in the following ,txpra_ssipni:

3

1/3 (28)

3
]

r, s ‘2# coo(%g)
r2 s 23’? col{%(o #380")]

: ',r-s ® 2’?(:03{%{5 4 72&9}}: .

Lo ) ST
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P the thrae roots are

i ~. J"’ 1 cos” 45 "
i | R ] S-g-;; COS{E cos l(-% 3 ER;LH-E;)} (29)
J% PQG 008{3 cos (_V 3 QYEW + 3500)} (30)

B""s

' K I 3
pqa cos{§ cos” ( 3 ERRI-; + 720€)} . (31)

Using (26), (29), (30), or (31) as appropriate, the con-

i)
~
]

T3

ditions which cause my and n to approach zero simultaneously are

easily found.

6.4 Condition for (mz - n) > 0 at the Defended Position
The value of the quantity d, = (m1 - n) at zero range is
a measure of future éuccess in taking the defended position.
g f--f‘ ~ Consider the conditions under which d, > 0 at range zero. lUsing

previous notation,

Com vy e 5(&3 - l’)*(,é— - §i‘)(n§ - _nz) (32)

T TR TR 2P ey

I AT W L NN, et
N wel e
»

R
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do > 0 implies that

a.aK 3 agqK I 2 ‘“qus
(N 3L)[p+ (RB-n)- (RB ) - 2=

3v v

2
K. (R - W
*["L‘Q'G—‘Z)]‘l.’.‘” (33)

or that the initial force ratio must be

K, (R? - X?%)
1 - mﬂ__g__._.. K.y
M v
RZ a.qKk, o qK'ﬂk o 45_ R (34)
g 3 s 2 2 8''s
p+3v (Ry n)-—;‘-,,-ﬁ-(ne ) >

6.5 Effeot of Aseault Speed and Peroentage Forcee Splitl

After considerable rearrangement of (33),

d° = pM - N+ ¢ ;g + ;3 s (35)
‘where
pK l‘z)xu'
Tl =+-qqanf——£———-—-—§-—
x gMCRZ - 1?) R K. NY

lSome recent roeults indxcats that “banz-bang controls should
be applied to v ard p 85 as to aaximize ¢_. These results

will be described in a later report.
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3 3 2 2
Ki Ri - T9)M n -1
_ agd ( ) i aquB KBNY(RB )
3 3 4
2
o qK " Nyy
- ——T—- ’

where

2 R R
vt

Taking the partial with respect to the assault speed

ado Ti 2T2 3T3

wn———— % W wmes - '-—'g - -—E . (36)
v v v v
To evaluate the behavior of (3€), one needs to know the alge-

braic s3igns of Tl,‘Tz, and T3. It is easily shown that T3 is
3T
always negative. Hence, - -—% is always positive, since
v .
by the coordinate system assumes that v will be a negative quantity.

Yt is beneficial to know the conditions under which do can

be increased with increased velocity. By inspection, if T, > ¢
3d

and Ty < 0, 3;2 yill be positive. T, >0 implies that
QSR’KgNYq

uqu8H$ > g or, after some rearrangement, fhat}

g > X : (M
R IR, - %3
s\'8 " 7

KN . -
Ty < 0 implies thlt,-%-[pYA* (Rg - 89 < a qR_M, or, after

some rearrangumuent, that
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2 L2
K. lpy + "R -]
M _B !
< = _%%,.n ‘ (38)
N “0gq8%g
ad,
Hence, when (37) and (39) are satisfied, v is pusitive ard

d, can be increased by increasing the velocity of the attack.
The condjitions under which the reverse is true are more difficult
to specify,

The conditions under which an assault speed exists, which

minimizes or maximizes do’ are given by

2
3 do ] 2T1 . 6:2 . 12T3 (39)
v: v3 v vS
12T3
T3 < 0==$-:!— > 0 {“0)
T>o==>13~9 (41)
2 :ﬁ T : .
2T1 .
T}(C'::}T>Q . (23
\"

The conditions (40), (41}, and {42) suggest that the second
derivative is positive if (37) and (38) hoid. Hence, the speed
found by setting (31) equal to zaro and solving would bé the o©ne

which minimizes d, for g in the specified intervai.

1See footnote page 380.
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Consider next the influence of the force split p. After

some manipulation, (33) may be put into the form

do = Ap + AB(1 - p) + C,

where
Koy M
_ M _ s
Azqt =gt
a K a K. I a R
_ 3 3 s B 2 2 3 s
a-—-fﬁs (RY - 11°) (Ry -~ 1°) - —
3v B 2v 8 v
KB(R2 - 1?)
€= gv -1

ad
Hencsz, 533 = A - AB = constant. To check the extreme cornditions,
ane cai see that do is at a maximun when p = 1 if

L+ A AB <+ C or B< 1., (43)

For the reverse of (%3), d wiil be at a maximum when p = 0.
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PART D
H TEROGENEQUS-FORCE DIFFERENTIAL MODELS




The preceding parts of the report described efforts to

* obtain solutions for the differential equation description

- of homogeneous-force batties. These descriptions were sim-
plifications of the general variable coefficient differential
equation model of heterogeneous-~force battles.l In this part
of the report we present solutions and solution procedures for
simplified forms of the differential equation description of
heterogeneous- force battles. Chapter 1 contains the development
of solutions for the heterogeneous -force battle model when tiae
attrition rates are cor.stant and a "zero-one" allocaticn policy
is employed. Chapter 2 contains a description of our efforts
tc develop optimal allocition strategies in context of the
heterogeneous -force model. Chapter 3 describes a simplified
numerical solution procedure for the general heterogeneous-
force model and a computer program for performing the compu-

tations.

e

Isee equations 1 and 2 in Chapter 2, Part A.

Preceding page biank
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Chapter 1
CONSTANT ATTRITION-COEFFICIENT MODEL

Stanley Sternberg

1.1 Introduction and Notation
In this chapter we shall discuss the solution of the
following differential equations representing a heterogeneous-

force battle:

dmi J
3=

i s 1’2‘...‘I

dn.
= - Z %53%13™ (2]
1

Pracoding page blank
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where

oy = the attrition rate--the rate at which an
individual system in the ith Blue group

|

"attrits live jth group Red targets when it

is firing at them.

&5 ° the alloaution factor--the proportion of ith
Blue group systems assigned to fire on jth Red
group targets. These are assumed to be either

zero or one for any i,j pair.1

Similar definitions apply to Bsg and hji' Equations 1 and 2
are similar to those presented in Part A of the report except
(a) perfect intelligence is assumed for both sides and (b) the
attrition rates and allocation factors are not range dependent
and are treated as constant.

To facilitate the study of [1] and {2] we introduce the
row vectors m, n, M, and R, whose elements are the Mgy Ny
and Nj’ respectively. The derivatives of m and n are appropri-

) Mi’

ately defined as the row vectors

dml dni
(=

=17

and

S,

i dn1 dnJ |

IThe value of this zero-one allocation policy is discussed
in Chapter 2 of this part.
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The matrices A and B are defined as

A= (a,;) = ( )

ij €13%i3

o
"
~~
o
~
1

It follows that equations 1 and 2 can be rewritten

dm _ _g n(t=0) = M

X -nB, m(t=0) = M (3) :
4

dn . _pA, m(t=0) = N . (1)

=

An alternate form to (3) and (4) that will be very useful

is defined in terms of the row vectors

z=(m n, q-=(HM N,

dz _ f{dm dn
dt (a'f' a'f)

and the matrix

s o)




The constant-coefficient, heterogeneous-force model of the
combat process may then be represented by the single matrix

equaticn

tis

= -2C, 2(0) = q . (5)

e

The sclution of equation §5 is a vector whose e¢lements are
functions of t. I* will be called continuoug if its elements
are continous functions of t in the interval of interest.

Similar definitions apply to matrix functions.

1.2 Extetence and Uniguenese of Solutions of Linear Systems
A unique solution exists to equation 5, as demonstrated by
the following basic theorem:
Theorem 1
If A(t) is continuous for t > 0, there is a unique

solution to the vector differential equation

$ =), %O =g . (6)

This solution exists for t > 0, and may be written in

the form

x = qX(t) , (7)




e 2

ETS

3393

where X(t) is the unique matrix satisfying the matrix

differential equation

ad% = Xa(t), X(0) =1, (8)

where I is the identity matrix.

The proof of thecrem 1, as presented by Beliman, is given in

Appendix D, 1;1. Cur particular problem is concerned with the

case in which A(t) is a constant matrix.

1.3 The Matrix Exponentigl

In the scalar case, the equation
%% = ax, x(G? : q (9)
has a soluvion
X = qeat . (10)
The analogous solution of the matrix equation
IE A, %0 =g (11)
has the form

At (12)

Xt
"
ol
®

i
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By analogy with the scalar case, we define the matrix expo-

nerntial by the infinite series

+—_r{'!'—+ « e s (13)

This matrix series exists for all A for any fixed value of t,

and for all t for any fixed A. It ccnverges uniformly for

finite t. A proof of convergence is given in Appendix D, 1, 2.

To show that equation 12 is the unique solution to matrix

differential equation 11l requires that eAt, as defined by (13),

satisfies

3 - © A, (1w)

eAt =1 for t =0,

as required by theorem 1. The validity of equation 14 is
CDV1OUS.

1.4

Similartty, Diagonaliaability, and Jordan Noimal Fornm

Since the solution of the differential equation 5 can be

written immediately as

z = ﬁe‘tc ; (1%)




our proklem reduces to evaluating the matrix exponential e—tc.

The infinite series given by (13), of course, is always avail-
able, but not very attractive. Our cbject is to write equation 16
in a closed form which will lend itself to rapid computation.

The solution is facilitated by the fact that the attrition

matrix C has a very special form. Recall that

0 A
C = (16)
B 0

and that

(a;:) = (

i3 eijaij) amn

(bji) (hji

o

B.:) . (18)

ji

When the fraction of type-i components assigned to opposing

type-j components is either 0 or 1, or vice versa, the matrix C

is said to be "row elemental."

[
Definttion 1
A real matrix A is "row elemental" it each of its
rows contains exactly one nonzero element. Similarly, A

is "column eliemental" if each of its columns contains
exactly one nonzerc element.
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The concept of tihe similarity of matrices is used in
the development of our scolution procedure. A square matrix A
is said (o be simila~ to a square matrix B if there exists

4 nonsingular matrix K such that

A= R MBR . (19)

Jf particular concern is the situation where A is similar to

a diagonal mairizx v, i.e.,

L]
o
~

A= RIDR , (2

dand we say rhat the matrix A is diagonalizable.

The reason for this particular interest becomes apparent

when we note that

A" = (R7IpRy(R7IDR) ... (R 1tR) (21

Y
A" R R—lonR . \22)

. . ... _~tA . . .
#cw the matrix exnonential e can be written in terms of

the powers of U as

e AL AR I
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-tA

(14
H
(]
1
+
o
ot
o
=
+
ct
N
v
o
e
t
w
o]
[
»)
w
x

2! - 3! + e o o '(‘23)""""’-:

or

2,2 3.3
-1 t°D t°D
R {I - tD+ 2! - 3! + n.o} R

-tA

1Y
"

(24)

But the diagonal matrix D raised to the nth power is simply

n
d11 0

D" = . (25)

Thus, the bracketed expression of equation 24 is in actuality

of the form td
e 11 0

~-td
]

22

(26)

Therefore, assuming that A is similar to a diagonal matrix D,

the matrix exponential may be evaluated from the expression
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e = R . R . (27)

. -td_

In the case where the attrition matrix is éimilar to a
diagonal mra*rix, the analysis is now quite clear even though
the actual determination of R and D has not as yet been discussed.
Unfortunately, however, the attrition matrix C is not generaily
diagonalizable.

The situation is remedied somewhat if we relax our assump-
tion that C is similar to a diagonal matrix to the conditicn
that C be similar to a matrix in Jordan normal form.

A matrix J is said to be in Jordan normal form if it is

zero everywhere except for submat-~ices along its diagonal, &ll

of which are Jordan blocks. If J1 ’ J2 s sees Jm are Jordan

tlocks, then the matrix

J = 0 J2 ] . . 0 (28)

/
O
(=]
cy
=]
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1s in Jordan normal form. A Jordan block is a square matrix

of the form

Ak 1 0 J 0
0 Ak 1... 0 0
J | = . . . . . . (29)

That is, it contains a sequence of 1's along its "superdiagonal,"
while everywhere elrse it is zero, except possibly along its
diagonal, which contains a sequence of identical, not necessarily

»eal, numbers, Ak. Thus, the matrix

01
is a Jordan block, so is the matrix (0 0), and the matrix of

a single element is alzo a Jordan block.
Our interest in Jordan normal matrices will be restricted
to those having Jordan blocks with zero elements along the

diagonal.
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n

Gefinition 2 ————
A "zerc Jordusn block," dencted

block with A, equal to zero.

[} i

is & iordc

o
x
L

A Jordan normal matrix whose diagonal consists entirely of

zero Jordan blocks and/or diagonal matrices will receive parti-

cular attention.

Definition 3
A "zero Jordan normal matrix," denoted JO, is a matrix

of the form

where the D, are diagonal matrices and the EED are zero
Jordan blocks.

We now state our mair result in the form of a theorem and

demonstrate its application to the solution of the heterogeneous -

force equations in the next section.
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Theorem &

If A is a square, row-elemental matrix, then A is
similar to a zero Jordan normal matrix.

The proof of theorem 2?2 is given in Sections % through 10.

1.8 Solution of the Heterogeneous-Force Differential Equations
In this rection we assume that cheorem 2 is true and

demonstrate its consequences. We have given that

};0

‘ C=RJR, (30)

where C is a row-elemental attrition matrix. Then,
2
2.0
e~tC - R‘l(I RS AR R A ...)R : (31)

The powers of J0 are

507 - D , (32)

where the Dﬁ are




]

K : : (33)

The powers of a zero Jordan block are quite easy %o compute as

illustrated in the following example:

/0100 D010 c o0 1\

70) . (20210, Eﬂ{:z o001 s _{oo0o0c¢C )
k) “\oo0o01)/)° "\00450/” ExJ “\oo0o00O

0000 0000 0000/

and Eﬂgrlis the zevro matrix for n > 3. In other words, if

Jq is a zero Jordan block of order N, then Jg,n is nonzerc
t

only for n < N, and the n

h power of [J, | is zero everywhere

except for a superdiagonal of l's displaced n times from the
main diagonal.
The bracketed term of equation 31 is therefore the metrix

function

El(-t) , 0

F(-t) E (-1

(34)
Tl(-t) T

.

0 TM(-t)‘
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Ek(—t) = {35
-td
0 e mmk/
and
1 oot 2720 -tdsa o0 ™\
6 1 -t t2720 0 D)™™ (a1t
Tk(-t) = 0 0 1 -t
0 U 0 1 s
. L] L] !
(36)

The snlution of the heterogeneous-force differential equa-

tions is therefore

mrw) = (M N)n'lr(-t)k . (37)

1.6 Aseignment Cheine and Cycles

When we examine the actual assignments which cculd erise
during a hecerogeneous €orce battle process, We recognize two
distinctly Jdifferent situations which lead to two different
kinds of time solutions to the model differential equations.

In the first situation we have "cyclic assignments.” For

example, my is assigned to ny, who ‘s assigned to m,, who is




assigned to N,y whe completes the cycle by being as-
signed to m, . Of course, here we are speaking about 0,1
assignments where each component groﬁﬁ is assigned to only
a single opposing component group. In the second situation
mq might be assigned tc nys who is assigned to Mys who in turn is
assigned to one of the components in the preceding cycle.
Thus m, is an unassigned componeﬁt and suffers no attrition,
while n, and m, form part of th& "chain" headed by my.
It should come as no surprise that the cyclic assignments
are directly related to the exponential terms of the time so-
lution showr. in equation 37, while each assignment chain gives
rise to a submatrix Tk' Tre complicated interrelations be-
tween the many possible assignment cycles and assignment
chains are manifested within the similarity transform ma-
trix, R .
We now define the above concepts in a more formal manner
with respect to the attrition matrix, C. Let C be a row

elemental matrix of order N and let W be the set of N subscript

pairs of the nonzero elements of C,

W = {(l,tl)’ (2’t2), (Y ) (N’tn)} 3 (38)

where the nonzero element on the ith

row of C occurs on the ti'th
column of C. Suppose that n-ordered sequence Sm of length

m can be formed from a subset of W

Sm = (Jl,til\)’ (12’ti2)’ -oc,(im,tim)‘ (39)
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for k = 1,...,m=1 . Such a sequence 1is said to fecrm a "sub-

script chain." TFor example,

Sy ° (4,3) (3,2), (2,5) (5,1)

is a subscript chain of length 4. The elements of C whose
subscripts form the subscript chain are said to form an "21-
ement chain," or simply a "chain" of length m,

1f Sh, ie a subscript chain and if

o F (41)

then the subscript chain is said to form a "subscript cycle.”
The clements of C whose subscripts form the subscript cycle
are said to form an "element ~ycle," or simply a "cycle" of

lengith n, denoted Cn. An example of a cycle of length three is

C3 z (cz’s), (°5,3) (c3’2).

A nonzero diagonal element of C forms a cycle of length one.
The following properties concerning the row-elemental
matrix C are Sufficiently obvious as to be stated largely

without proof:

Property 1 All nonzero elements of C belong to either
cycles or chains, or both. To avoid the ambiguity
of the lattier case, we will say that an element
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belongs to a chain if and only if it doesgnét belong
to a cycle. ‘ i

Property 2 An element can belong to at riost one
cycle. For if two different cvcles share common
elements, then there is one common element, Say
S5 ko which is followed by nonzero elemepts:ck’t

K,t Rk # kK'y of different cycles. But this

contradigts our premise that C is row elemental.

and c

Property 3 There are no cycles of length one in C.
Similarly, there are no chains of length one. (C
has a zero diagonal.)

Property 4 All cycles of C are of even length.

Property 5 Let A’ be a row-elemental matrix, all of whose
nonzero elements form a single cycle. Then A is. __
also column elemental.

Definition 4
A "cyclic matrix" is a row-elemental matrix whose

nonzero elements rform a single cycle.

In proving that a row-elemental attrition matrix C is
cimilar to a zero Jordan normal matrix (theofem»Z), we will

first show that C is similar to a "cyclic normal matrix."

Definition § A row-elerental matrix of the form
C; 0...0 0\ ) ‘ ‘
, .
0 C2"' 0 0 ‘ + pows
Q=1 : i (42)
\o 0...C 0 []
\D1 D2"‘ o G.//}h-t rows
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is said to be "<ylic normal" if Cl,C2s..L,C are cycllc
submatrices ard the nonzero elements of submatrlx G Qo

not form any cycles.

Theorem 3

Let A be a square, row-elemental matrix.
is similar to a cyclic normal matrix Q, i.e.,

A = P lgp,

where the similarity transform P is a perﬁutatidﬁ~métﬁix.

; .
\

a few definitions concerning perm:tatiocns.

Defintition 6

A "permutation of degree n" is the operatlon of ©
changing the order of n given distinct obJects.-
n distinct objects are the numbers i,...,n, & peﬂmu*atlhn\3
is the replacement of one arrangement (Al,...-kn)“of

(1,...sn) by a second arrangenient (ul,...,u ).
represent this permutation by .

AI,...,Xn' -

'ul,...,un

into u; or that My is the image oflli,ﬁndeg T

W(Ai) = ui .

Then A

Ca3)

Before proceeding with the proof of theorem 3, we;infﬁoduce

If the

iWe

5 oeed Rl F R
i, .

Ivli,
L SR

-
s
4

-

o

We frequently say that the permutationun transquhs Eif



e inition 7
The "product" o7 of two permutations T and O is the

permutation resulting from first carrying out 7 and then

g,  Thus it
1"..’n A,.QC’A
n o= g = 1 n
Ala"'a)\n Ul"'-run ’
then
1,.."n
om = .
Mpseeoshy

It follows that the inverse of

Al,nao,xn

Hyseeeoly

is the permutation

/
IS LSURRERL
Alg...,Xn .

Definition &
With each permutation m of degree n is associated the

n-by-n matrix P defined by the equation

(P..) = {l whenever i = n(j)
1] 0 otherwise

for i,i= 1,...,n., Thus, if ® is the permutation
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l,.nc,n

.Al’ e 9 ’An

the first column of P contains a 1 in the Alth row, the

second column of P contains a 1 in the Ach row, and so
forth, while all the remaining elements are equal to
zero. A matrix of ihis type is called a "permutation

matrix.”

It follows from definitions 7 &nd 8 that, if P is a
permutation matrix associated with the permutation 7w, then
P-l is the permutation matrix associated with i

A permutation 7 may be per{ormed on the rows of a square
matrix A by premultipiyir & by the permutation matrix P asso-

ciated with v, Le’ ¥ayy denrte the elements of the matrix

product PA, then

paij z g pik Ag (44)

. . .th
There is only on2 nonzero eliement, Pijas 1N the i row of

P. In particulanr, Pika © 1 where k* = w-l(i). Hence , the non-

zero product in the summation over k is pa  if and only if
i= n(k). "

A permutation 71 may be performed on the cvlumns of a
square matrix A by postmultiplying A by the inverse of the
permutation matrix P associated with m, Transposing A replac-

es the rows of A by the columns of A. Premultiplying AT

by P permutes the rows of AT. Transposing the matrix produd.t




T

pAT yields APT, which replaces the columns of A" by the

T
permuted rows of A"; hence, A has been permuted columnwise

according to m. Since the columns of P are mutually orthogonal,
normal vectors, PT = P_l. The oparaiion of simultaneously in-
terchanging (permuting) the rows and columns of 2 square matrix
A according to a permutation m is therefore accomplished by the
matrix operation PAP™™,

Simultaneocus row and column intercharges are all that are
required to put a square, row-elemental matrix into cyclic
normal form. Let A be square and row-elemental and let W

be the set of subscript pairs of the nonzero zliements of A

W= {(1,t1),(25t‘\, A7 S0 B I

Let cl,...,cm be subsets of W of subscript pairs forming cycles
in A. In particular, cycle k conaists of tue & sudbscrip*
pairs

ck = {(’\lgfkl)’uocg(klgtkl)} .

Let ", be the permutation

o \
. . kl xzocokt
k

T rel., el

and P, its associated permutation matrix. Then the operation
PkA interchanges the rows kl,...,k? of A with rows r,...,r¢l

of A. The operation'Apil interchanges columns kl""'kl

with columns v;...,rtl cf A. But cdolumns kl""’kl precisely
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contain the elements of cycle C, becarse {t, ,...,t, } is
k k1 kg

identical to {kl""’kl} .  Therefore, PkAP)'(1 moves the elements

of cycle Ck into the square submatrix Ck on the diagonal of

Q. The fact that A is row elemental insures that C, will contain
only the nonzero eiements of cycle Ck.
Simultaneous row and column interchanges of the type

just described on all cycles of A are accomplished by the

transformation
-1 -1 -1
Pum_l...PlA Pl ...Pm_1 Pm ’ (45)
or sinply
pAp~L | (u6)

where P = Pum_l...P1 . If j* is the column subscript of a i
nonzero element a* of A not belonging to a cycle of A, but with 3
j* contained in the set of column indices of cycles of A, then
i*, the row subscript of a*, cannot beiong to any set of row
indices of cyclos; or a®* would itself belong to a cycle.

The similarity transformation PAP'1 therefore carries column
j* into the first t columns of Q, but carries row it ihto the
last n-t rows of Q. The submatrices D,, therefore, are made ’
up of nonzero elements sharing rows with the elements of Ck'
All submatrices to the left and right cf Ck must be zero. ‘
Finally, the matrix G is composed of interchanged nonzero

elements of A not previously sharing columns with elements

belonging to cycles.
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i vl pmormal matrix ) is therefore obtained from
]
= pAE"L (47)
A I'.qu‘ ' (48)

vhia ¥ pmg!f Yitpioes

i Topdan normal matrin wae prcviauaiy discussed in
wpot fan 0, Theorem 7 stated without proof that, if A is
g < pauare, row-slamnental matrix, then A is simiiex (w a par-
tfoular Jlordan normal form. called a gero Jordan normal ma-
h irin, The aere Jordan normal form was defined in terme of
| submatrices along itl»dilgohdl, which were stated to be
sither diagonal submatrices or zero Jordan blocks.

In fhoorom\! it was shown that a square, row-elemental
matrix A is oimilir t6 a cyelic uo:m;l‘mgtvix'o. wé begin at
this point fo dimonltrafa that Q ia-@imilgr to a zero Jor@an

normal ﬁatrix_Jo. 'sincg.' S R

AaxPlp w9
by theobem 3, agd as we wilil ¢cm¢nbtrate,
Q=38 °Js8 , ; , (53)

fh,.ppédf-gf_theorgm f immediate1y follows as

A = P ls~Ls%p | £51)




413

or

A=RJR, (52)

where R = SP .,
Our particular result follows as a consequence c¢f the fol-

lowing well-known theorem uf linear algebra:

Theorem 4
Let A be an arbitrary square matrix. Then there exists

a wwasingular matrix T such that

1

A= T JT, (53)

where J is a Jordan normal matrix.

Since the proof of this theorem is quite detailed and is
given by Franklin (1968), we shall avoid the proof but we
will discuss its ccnsequences.

We write the NxN Jordan normal matrix J as

where the kth Jordan block

o O

ot see
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is of order n s hence, n, + R ny ® N. Let the rows of T
be denoted by the row vectors Tl”“’Tﬁ and let the submatrix

: " z
T, of T consist of the M, rows T +1,...,T where s,

X ) try’

+°'"" +n_ .. Premultiplying both sides of equation 53

o k-1
by T yields

TA = JT, (54)

which is equivaient to the system

T,A = 'rk; kK = 1,0..M.  (55)

Expanding (55) shows that

A1 00 00
Tsk+1 C A «ev 0 O T’k*l
SN O T T R P
Tsk+ 0 0 ..oy 1 Y‘k’“k
0 0 .. 0 A
or
Tsk+1 A=y Tskf1 ¢ Tan
le+nk:1 A=Ay Tskm'k-l * T'x*“k
.Tukfnk A= A T&k§pk , | ) : ,:u ; ,-(57’.:

which, on collecting common tdrnl;'is.:

e
.

Porteriniire o ety

T e m——g

—d




415

T

Ly (A - AI) = s
sk+l k sk+2
T (A=-AI)=T - (38)
sk+nk-1 k sk+nk
Ly (A -AI)=0 .
sk*nk k

Now, substituting the last equation into the next to last

and so forth yields

Ny
T, (A - 2D

= 0
. k
Teitn 104 - % SR (59)
Tsk+nk(A =AD=0 .
The vector T is by definition an eigenvector of A corres-

8 +

x M |
ponding to the eigenvalue lk. The eigenvalue Ak has multi-
plicity m in A 2nd the remaining nk-l vectors Tsk+1,...,
T;k+n‘=1 are called "latent eigenvectors" of A corresponding
to eigenvalue ), . The'Ti are necessarily linearly independent
as the matrix T is nohcingular.

- Both eigenvectors and lateni eigenvectors are examples

' of what Franklin calls "principal vectors." He states that
| &_:ﬁvb*or nonzero vector D is § principal vector of grade

:_z.glﬂibtidagins‘to thcvqiginV§lue”Ai it

(A_ijx' - A% s 0

~and if there is nc‘éngliqr nbnencgative.intoger Yy < g for which
_kklili-bﬂ)rsbl'ﬂok .

G o i
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The vector p = 0 is the principal vector of grade 0.
The eigenvectors are the principal vectors of grade 1.
Herein we shall speak in terms of principal vectors of grade
g rather than this ambiguous latent eigenvectors and restrict
the term eigenvector for a principal vector of grade 1.

In the next section we discuss the eigzenvalues and ei-

- genvectors of the cyclic submatrices on the diagonal of the

cyclic normal matrix Q.

1.8 Eigenvalues of Cyclic Matrices

We begin by stating our main result.

Theorem &

Let C be an N-by-N cyclic matrix: (i) Then C is
similar to a diagonal matrix; (ii) Let p be the product
of the N nonzero elements of C, then C has N dxstinct
eigenvalues equal to the NER roots of (- 1) p.

We need only prove part (ii), for part (i) follows immediately

from the following theorem.

Theorem ¢

- [Mirsky, (1961), p. 2961 If the N eigenvalues of
the N-by-N matrix A are distinct. then A 1is similar to
a diagonnl uatrix.

we wi]l need the following definitiona in proving part (ii)

of theorem 5.

Dcftnitton 5

(1) Let A be an H-by-N matrix. If K< M and L <N,
~ then any K rows and L columns of A datarninc 4 K-by-L "sub-
matrzx" of A, (ii) The determinant of a K=by-K submatrix
of A 13 called a "K~-rowed ninor" of A,
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When A is square, the following defirition is relevant:

Definition 10

A "principal submatrix" of A is a submatrix whote
diagonal is part of the diagonal of A. The determinant 1
of K-+by=-K principal submatrix of A is called a "K-rowed

principal minor" of A.

A K-by~K principal submatrix is obtained from the N-by-~N matrix
A by deleting N-K rows of A and the corresponding columns,
i.e., rows and columns having like indices.

Finally, so there is no misunderstanding:

Definition 11

Let A = (ai.) be an N-by-N matrix and A a scalar
variable. The "characteristic polynomial" of A is the
polyncmial g(i) given by

A - all - 612 e - alN
S(X) s ilI - Al S - 321 A - 622 ¢« s e - a2N

L S 7 SCE R YY) I

(60)

The characteristic equation of A is the equation g(a)
= 0. Its roots are the eigenvalues (or characteristic
roots) of A. |

The polynomial g(r) is of degree N. Tte leading term is N,
The remaining coefficients can be determined by the following

theoren:
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Theorem 7

(Mirsky, p. 197] For 0 < r < N, the coefficients

of \¥ in the characteristic polynomial g()) of A is

N-r

equal to (-1) times the suw. of all (N-r)-rowed principal

minors of A.

The principal minors of a cyeclic matrix may be evaluated

by the follcwing theorem:

Theo:em 3}
Let C be an N-by~N cyclic matrix. Then for ¢ < r < N,
all (N-r)-rowel principal minors of C are zero.

The proof of theorem 8 foliows. Let C' denote an (N-r)-
rowed principal submatrix of C where 0 < r < N. Sinze C is
both row- and column-elemental, its principal submat-ices, formed
by deleting corresponding rows and columns of C, must nececs-
sarily contain fewer nonzero elements than C. As the nonzero
elements of C form a single cynle, the nonzero elements of C'
cannot therefore form any cycles.

th

If we denote the n™" power of C' as c'h - (c?n), then

we can write

(61)




Note that the el:ments in the summand above form an n-clement

I chain. Now supjose n = N. The elerents in the somman? chain
cannot all be nonzero, fer if they were, theyv wculd neccessarily
have to bz 4distinct; otherwise, the N-eleme:t chain would
contain a cycle. But (' cannot contain N distirct ronzero
elenents simply because 1t has fewer than N nonzero elements
Therefore, cig is -ero and C'N is the zero matrix. The proot

of the theorem folliows from the fact that
e g™ = je?)

far r=0, the single (N-r)-rowed principal minor of C
. N . . . . 1
is simply the determinant of C, which iz given by (-1)N+‘
times the product of the nonze:so elements of C. Letting p

denote this product, the characteristic equation of C is then,

by theorems 7 and 8,

N N+l

AT+ (1)t s =0 . (62)

This result proves part {ii) of theorem 5.

1.9 Bigenvectors of Cyolic Matri.cs
Before we can transform a cyclic matrix to its dlageral
form, we must compute the necessary transformation .airix.

This is accomplished by computing its eigenvectors.

Theorem §
(Mirsky, 1961, p. 293). If x,....,xn are l.nearly
independent eigenvectors of an n-py-n matri» A, ang $
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is the (nonsingular) matrix having xl,.o.,xn as its columns,

then S1AS is a diagonal matrix.

Eigenvectors corresponding to distinct eigenvalues of A are
linearly independent (Perlis, 1952, p.172), and thus an n-by-n
cyclic matrix has n linearly independent eigenvectors. It only
remains to solve for them.

et C be a cyclic matrix and dennte the nonzero element on
the ith row ¢: C as cl,t.’ Let X by an eigenvector of C
corresponding to eigenvaiue A. Then by definition

(AT -~ C)X = 3, (63)

or, by the rules of matrix multiplication,

<
"
o

>
x
t
~
1}
(=]

(64)

Now the coefficient matrix in (63) has rank n-1; hence, the
soiution of the homecgeneous system of linear equations con-

tains a single arbitrary value. We set x; = 2. Then,

R T —— (65)
Y °1,t,
and furthermore
X, = X, c A . (66)
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To eliminate the staircase subscripts we denote the ith_ofo14

image of 1 as s;+ Then, in general, the X, are given by the

recursion relationsnip

(67)

8. S. o] L4
i-1 84,125

where xs0 = X, =1,
The subscripts B(sSysee a8 define the "cyclic order"
of the cyclic matrix C. ([Note that 8g ° 1.] For instance.

th2 cyclic order of the cyclic matrix

0003

020
l10¢0¢60
02060

is (1,4,2,3). Similarly, we define the "cyclic permutation"

corresponding to the cyclic matrix C to be

1’2’3, ve e g

1,31,52,...,sn_1‘

whose corresponding permutation matrix is P« Then finally,

’  (88)

where the 4, are given by the recursion
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d, = d

s C H is= 1,...,1’1—1 (69)
i i-1 "8; 484 _

and d0 = 1.
Letting D denote the diagonal matrix (dii)’ we can write

the eigenvector X corresponding to the eigenvdlue A as

2

inJE/

If Al,Az,...,xn are the eigenvalues of C, then the transform

ceds >

matrix ic given by

S = PcDA ’ (70)

where

Kavirg treated the eigenvalues and eigenvectors of the

cyclic submatrices of the cyclic norm form of Section 6, we
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endeavor to show that the remaining eigenvalues of the eyclie

normal form arée all zero.

Recall that the cyclic normal form of a square row-elemen~

tal matrix of order n is

[ ¢ oo 0
[ o |

C2'.' 0 0

Q= . . . . ’ (72) -
0 0«00 Cm 0
D, D,... D, G

where Cl,..:,Cm are cyclic submatrices and the submatrix G
contains no cycles. For some positive integer r, the matrix

6" is identically zero. This fact follows from the Arguﬁent

. thit the elements of G given by the expression

(73)

in which the elements of the summand form a chain of leﬁgfh.
r. Since G contains no cyclas’such that the elements‘of;G
may De repeated in the summand, we can guarantee that e is‘_'
zero simply by.mﬁking,r greater fhan_the order of G: 'This follows'
from thé fact that G is row elemental ahd therefore cohf;iﬁg |
at most r nonzero elements. | |
‘For some power r of Q, say v equals the order_of.c,;we'cep

then ;ay

T T L Y T YR Y P e




